Monotone compact running schemes for systems of hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 672-695 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For quasilinear hyperbolic equations, conservative absolutely stable compact schemes are presented that are monotone in a wide range of local Courant numbers. The schemes are fourth-order accurate in space on a compact stencil and first-or third-order accurate in time. They are efficient and are solved by the running calculation method. The convergence rate of the schemes is analyzed in detail in the case of mesh refinement for solutions of various orders of smoothness. The capabilities of the schemes are demonstrated by solving well-known one-dimensional test problems for gas dynamics equations.
@article{ZVMMF_2012_52_4_a7,
     author = {M. N. Mikhailovskaya and B. V. Rogov},
     title = {Monotone compact running schemes for systems of hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {672--695},
     year = {2012},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a7/}
}
TY  - JOUR
AU  - M. N. Mikhailovskaya
AU  - B. V. Rogov
TI  - Monotone compact running schemes for systems of hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 672
EP  - 695
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a7/
LA  - ru
ID  - ZVMMF_2012_52_4_a7
ER  - 
%0 Journal Article
%A M. N. Mikhailovskaya
%A B. V. Rogov
%T Monotone compact running schemes for systems of hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 672-695
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a7/
%G ru
%F ZVMMF_2012_52_4_a7
M. N. Mikhailovskaya; B. V. Rogov. Monotone compact running schemes for systems of hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 672-695. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a7/

[1] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy, v. VII-1, Ch. 2, Yanus-K, M., 2008, 141–174

[2] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[3] Galanin M. P., Savenkov E. B., Metody chislennogo analiza matematicheskikh modelei, Izd-vo MGTU im. N. E. Baumana, M., 2010

[4] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[5] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[6] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applications, World Scientific, Singapore, 1994 | Zbl

[7] Adams N. A., Sharif K., “A high-resolutiion compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127:1 (1996), 27–51 | DOI | MR | Zbl

[8] Shen Y.-Q., Zha G.-C., “Generalized finite compact difference scheme for shock/complex flowfield interaction”, J. Comput. Phys., 230:12 (2011), 4419–4436 | DOI | MR | Zbl

[9] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matem. modelirovanie, 20:1 (2008), 99–116 | MR | Zbl

[10] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Dokl. RAN, 436:5 (2011), 600–605 | MR | Zbl

[11] Tolstykh A. I., “Ob integrointerpolyatsionnykh skhemakh zadannogo poryadka i drugikh prilozheniyakh multioperatornogo printsipa”, Zh. vychisl. matem. i matem. fiz., 42:11 (2002), 1712–1726 | MR

[12] Tolstykh A. I., Shirobokov D. A., “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 71–85 | MR | Zbl

[13] Tolstykh A. I., Lipavskii M. V., “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comp. Phys., 140:2 (1998), 205–232 | DOI | MR | Zbl

[14] Ladonkina M. E. i dr., “Ob odnom variante suschestvenno neostsilliruyuschikh raznostnykh skhem vysokogo poryadka tochnosti dlya sistem zakonov sokhraneniya”, Matem. modelirovanie, 21:11 (2009), 19–32 | Zbl

[15] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matem. modelirovanie, 23:6 (2011), 98–110 | MR | Zbl

[16] Liska R., Wendroff B., Comparison of several difference schemes on 1D and 2D test problems for Euler equations, Techn. Rept. LA-UR-01-6225, LANL, Los Alamos, 2001

[17] Liska R., Wendroff B., “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3 (2003), 995–1017 | DOI | MR | Zbl

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[19] Kalitkin N. N., Koryakin P. V., “Bikompaktnye skhemy i sloistye sredy”, Dokl. RAN, 419:6 (2008), 744–748 | MR | Zbl

[20] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, Dokl. RAN, 430:4 (2010), 470–474 | MR | Zbl

[21] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[22] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[23] Ostapenko V. V., “O monotonnosti raznostnykh skhem”, Sibirsk. matem. zh., 39:5 (1998), 1111–1126 | MR | Zbl

[24] Ostapenko V. V., “O silnoi monotonnosti nelineinykh raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1170–1185 | MR | Zbl

[25] Polyanin A. D., Zaitsev V. F., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003

[26] Tolstykh A. I., “O semeistvakh kompaktnykh approksimatsii 4-go i 5-go poryadkov s obrascheniem dvukhtochechnykh operatorov dlya uravnenii s konvektivnymi chlenami”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 894–907 | MR | Zbl

[27] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[28] Jiang G.-S., Shu C.-W., “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[29] Elizarova T. G., Shilnikov E. V., “Vozmozhnosti kvazigazodinamicheskogo algoritma dlya chislennogo modelirovaniya techenii nevyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 49:3 (2009), 549–566 | MR | Zbl

[30] Elizarova T. G., Shilnikov E. V., Popravka, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 784 | MR

[31] Cocchi J. P., Saurel R., Loraud J. C., “Some remarks about the resolution of high velocity flows near low densities”, Shock Waves, 8 (1998), 119–125 | DOI | Zbl