Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In an inhomogeneous nonlinear light guide doped with two-level resonant atoms, the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system can be used to describe the propagation of optical solitons. In this paper, the Lax pair and conservation laws of that model are derived via symbolic computation. Furthermore, based on the Lax pair obtained, the Darboux transformation is constructed and soliton solutions are presented. Figures are plotted to reveal the following dynamic features of the solitons: (1) Periodic mutual attractions and repulsions of four types of bound solitons: of two one-peak bright solitons; of two one-peak dark solitons; of two two-peak bright solitons and of two two-peak dark solitons; (2) Two types of elastic interactions of solitons: of two bright solitons and of two dark solitons; (3) Two types of parallel propagations of parabolic solitons: of two bright solitons and of two dark solitons. Those results might be useful in the study of optical solitons in some inhomogeneous nonlinear light guides.
@article{ZVMMF_2012_52_4_a6,
     author = {Rui Guo and Bo Tian and Xing L\"u and Hai-Qiang Zhang and Wen-Jun Liu},
     title = {Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear {Schr\"odinger{\textendash}Maxwell{\textendash}Bloch} system with symbolic computation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {671},
     year = {2012},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/}
}
TY  - JOUR
AU  - Rui Guo
AU  - Bo Tian
AU  - Xing Lü
AU  - Hai-Qiang Zhang
AU  - Wen-Jun Liu
TI  - Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 671
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/
LA  - en
ID  - ZVMMF_2012_52_4_a6
ER  - 
%0 Journal Article
%A Rui Guo
%A Bo Tian
%A Xing Lü
%A Hai-Qiang Zhang
%A Wen-Jun Liu
%T Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 671
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/
%G en
%F ZVMMF_2012_52_4_a6
Rui Guo; Bo Tian; Xing Lü; Hai-Qiang Zhang; Wen-Jun Liu. Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/

[1] W. P. Hong, “Comment on Spherical Kadomtsev–Petviashvili Equation and Nebulons for Dust Ion-Acoustic Waves with Symbolic Computation”, Phys. Lett. A, 361 (2007), 520–522 | DOI | Zbl

[2] B. Tian, Y. T. Gao, “Comment on: ‘Exact Solutions of Cylindrical and Spherical Dust Ion Acoustic Waves’ [Phys. Plasmas, 10, 4162 (2003)]”, Phys. Plasmas, 12 (2005), 054701 | DOI

[3] B. Tian, Y. T. Gao, “On the Solitonic Structures of the Cylindrical Dust-Acoustic and Dust-Ion-Acoustic Waves with Symbolic Computation”, Phys. Lett. A, 340 (2005), 449–455 | DOI | Zbl

[4] B. Tian, Y. T. Gao, “Spherical Kadomtsev–Petviashvili Equation and Nebulons for Dust Ion-Acoustic Waves with Symbolic Computation”, Phys. Lett. A, 340 (2005), 243–250 | DOI | Zbl

[5] B. Tian, Y. T. Gao, “Symbolic Computation on Cylindrical-Modified Dust-Ion-Acoustic Nebulons in Dusty Plasmas”, Phys. Lett. A, 362 (2007), 283–288 | DOI | Zbl

[6] Y. T. Gao, B. Tian, “Cosmic Dust-Ion-Acoustic Waves, Spherical Modified Kadomtsev–Petviashvili Model, and Symbolic Computation”, Phys. Plasmas, 13 (2006), 112901 | DOI

[7] Y. T. Gao, B. Tian, “Cylindrical Kadomtsev–Petviashvili Model, Nebulons, and Symbolic Computation for Cosmic Dust Ion-Acoustic Waves”, Phys. Lett. A, 349 (2006), 314–319 | DOI

[8] B. Tian, Y. T. Gao, “Cylindrical Nebulons, Symbolic Computation, and Backlund Transformation for the Cosmic Dust Acoustic Waves”, Phys. Plasmas, 12 (2005), 070703 | DOI | MR

[9] B. Tian, G. M. We, C. Y. Zhang, W. R. Shan, Y. T. Gao, “Transformations for a Generalized Variable-Coefficient Korteweg-de Vries Model from Blood Vessels, Bose–Einstein Condensates, Rods and Positons with Symbolic Computation”, Phys. Lett. A, 356 (2006), 8–16 | DOI | Zbl

[10] Y. T. Gao, B. Tian, “$(3+1)$-Dimensional Generalized Johnson Model for Cosmic Dust-Ion-Acoustic Nebulons with Symbolic Computation”, Phys. Plasmas (Lett.), 13 (2006), 120703

[11] B. Tian, Y. T. Gao, “Spherical Nebulons and Backlund Transformation for a Space or Laboratory Unmagnetized Dusty Plasma with Symbolic Computation”, Eur. Phys. J. D, 33 (2005), 59–65 | DOI

[12] Y. T. Gao, B. Tian, “Reply to “Comment on: ‘Spherical Kadomtsev–Petviashvili Equation and Nebulons for Dust Ion-Acoustic Waves with Symbolic Computation’ ” [Phys. Lett. A 361, 520 (2007)]”, Phys. Lett. A, 361 (2007), 523–528 | DOI | Zbl

[13] Y. Gao, B. Tian, “On the Nonplanar Dust-Ion-Acoustic Waves in Cosmic Dusty Plasmas with Transverse Perturbations”, Euro. Phys. Lett., 77 (2007), 15001 | DOI

[14] B. Tian, Y. T. Gao, “Symbolic-Computation Study of the Perturbed Nonlinear Schrödinger Model in Inhomogeneous Optical Fibers”, Phys. Lett. A, 342 (2005), 228–236 | DOI | Zbl

[15] B. Tian, Y. T. Gao, H. W. Zhu, “Variable-Coefficient Higher-Order Nonlinear Schrödinger Model in Optical Fibers: Variable-Coefficient Bilinear Form, Backlund Transformation, Brightens, and Symbolic Computation”, Phys. Lett. A, 366 (2007), 223–229 | DOI | Zbl

[16] K. C. Chan, H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Compression: Effects of Optical Fiber Characteristics”, IEEE J. Quantum Electron., 31 (1995), 2226–2235 | DOI

[17] J. P. Gordon, “Interaction Forces among Solitons in Optical Fibers”, Opt. Lett., 8 (1983), 596–598 | DOI

[18] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers”, Phys. Rev. Lett., 45 (1980), 1095–1098 | DOI

[19] T. Kanna, E. N. Tsoy, N. Akhmediev, “On the Solution of Multicomponent Nonlinear Schrödinger Equations”, Phys. Lett. A, 330 (2004), 224–229 | DOI | MR | Zbl

[20] F. K. Abdullaev, J. Garnier, “Dynamical Stabilization of Solitons in Cubic-Quintic Nonlinear Schrödinger Model”, Phys. Rev. E, 72 (2005), 035603 | DOI | MR

[21] G. P. Agrawal, Nonlinear Fiber Optics, Academic, San Diego, 2001

[22] A. Hasegawa, F. Tappert, “Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I: Anomalous Dispersion”, Appl. Phys. Lett., 23 (1973), 142–144 | DOI

[23] A. I. Maimistov, A. M. Basharov, Nonlinear Optical Waves, Springer-Verlag, Berlin, 1999 | MR

[24] L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York, 1975

[25] S. L. McCall, E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light”, Phys. Rev. Lett., 18 (1967), 908–911 | DOI

[26] G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York, 1980 | MR | Zbl

[27] K. Porsezian, K. Nakkeeran, “Optical Soliton Propagation in a Coupled System of the Nonlinear Schrödinger Equation and the Maxwell–Bloch Equations”, J. Mod. Opt., 42 (1995), 1953–1958 | DOI | MR | Zbl

[28] K. Porsezian, “Optical Solitons in Some SIT Type Equations”, J. Mod. Opt., 47 (2000), 1635–1644 | MR | Zbl

[29] K. Porsezian, K. Nakkeeran, “Solitons in Random Nonuniform Erbium Doped Nonlinear Fiber Media”, Phys. Lett. A, 206 (1995), 183–186 | DOI | MR

[30] J. S. He, Y. Cheng, Y. S. Li, “The Darboux Transformation for NLS-MB Equations”, Commun. Theor. Phys., 38 (2002), 493–496 | MR

[31] S. Kakei, J. Satsuma, “Multi-Soliton Solutions of a Coupled System of the Nonlinear Schrodinger Equation and the Maxwell–Bloch Equations”, J. Phys. Soc. Jpn., 63 (1994), 885–894 | DOI | MR | Zbl

[32] A. Mahalingam, K. Porsezian, M. S. Mani Rajan, A. Uthayakumar, “Propagation of Dispersion-Nonlinearity-Managed Solitons in an Inhomogeneous Erbium-Doped Fiber System”, J. Phys. A: Math. Theor., 42 (2009), 165101 | DOI | MR | Zbl

[33] N. Vidhya, A. Mahalingam, A. Uthayakumar, “Propagation of Solitary Waves in Inhomogeneous Erbium-Doped Fibers with Third-Order Dispersion, Self-Steepening and Gain/Loss”, J. Mod. Opt., 56 (2009), 607–614 | DOI | Zbl

[34] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-Evolution Equations of Physical Significance”, Phys. Rev. Lett., 31 (1973), 125–127 | DOI | MR | Zbl

[35] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 2003 | MR | Zbl

[36] L. Wang, Y. T. Gao, X. L. Gai, Z. Y. Sun, “Inelastic Interactions and Double Wronskian Solutions for the Whitham–Broer–Kaup Model in Shallow Water”, Phys. Scripta, 80 (2009), 065017 | DOI | Zbl

[37] X. Yu, Y. T. Gao, Z. Y. Sun, Y. Liu, “Wronskian Solutions and Integrability for a Generalized Variable-coefficient Forced Korteweg-de Vries Equation in Fluids”, Nonlinear Dynamics, 67 (2012), 1023–1030 | DOI | Zbl

[38] X. Yu, Y. T. Gao, Z. Y. Sun, Y. Liu, “Solitonic Propagation and Interaction for a Generalized Variable-coefficient Forced Korteweg-de Vries Equation in Fluids”, Phys. Rev. E, 83 (2011), 056601 | DOI

[39] Z. Y. Sun, Y. T. Gao, X. Yu, Y. Liu, “Amplification of Nonautonomous Solitons in the Bose–Einste Condensates and Nonlinear Optics”, Europhys. Lett., 93 (2011), 40004 | DOI

[40] Z. Y. Sun, Y. T. Gao, Y. Liu, X. Yu, “Soliton Management for a Variable-coefficient Modified Kortewegde Vries Equation”, Phys Rev. E, 84 (2011), 026606 | DOI

[41] L. Wang, Y. T. Gao, X. L. Gai, “Odd-Soliton-Like Solutions for the Variable-Coefficient Variant Boussinesq Model in the Long Gravity Waves”, Z. Naturforsch. A, 65 (2010), 818–828