@article{ZVMMF_2012_52_4_a6,
author = {Rui Guo and Bo Tian and Xing L\"u and Hai-Qiang Zhang and Wen-Jun Liu},
title = {Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear {Schr\"odinger{\textendash}Maxwell{\textendash}Bloch} system with symbolic computation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {671},
year = {2012},
volume = {52},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/}
}
TY - JOUR AU - Rui Guo AU - Bo Tian AU - Xing Lü AU - Hai-Qiang Zhang AU - Wen-Jun Liu TI - Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 671 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/ LA - en ID - ZVMMF_2012_52_4_a6 ER -
%0 Journal Article %A Rui Guo %A Bo Tian %A Xing Lü %A Hai-Qiang Zhang %A Wen-Jun Liu %T Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 671 %V 52 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/ %G en %F ZVMMF_2012_52_4_a6
Rui Guo; Bo Tian; Xing Lü; Hai-Qiang Zhang; Wen-Jun Liu. Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrödinger–Maxwell–Bloch system with symbolic computation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a6/
[1] W. P. Hong, “Comment on Spherical Kadomtsev–Petviashvili Equation and Nebulons for Dust Ion-Acoustic Waves with Symbolic Computation”, Phys. Lett. A, 361 (2007), 520–522 | DOI | Zbl
[2] B. Tian, Y. T. Gao, “Comment on: ‘Exact Solutions of Cylindrical and Spherical Dust Ion Acoustic Waves’ [Phys. Plasmas, 10, 4162 (2003)]”, Phys. Plasmas, 12 (2005), 054701 | DOI
[3] B. Tian, Y. T. Gao, “On the Solitonic Structures of the Cylindrical Dust-Acoustic and Dust-Ion-Acoustic Waves with Symbolic Computation”, Phys. Lett. A, 340 (2005), 449–455 | DOI | Zbl
[4] B. Tian, Y. T. Gao, “Spherical Kadomtsev–Petviashvili Equation and Nebulons for Dust Ion-Acoustic Waves with Symbolic Computation”, Phys. Lett. A, 340 (2005), 243–250 | DOI | Zbl
[5] B. Tian, Y. T. Gao, “Symbolic Computation on Cylindrical-Modified Dust-Ion-Acoustic Nebulons in Dusty Plasmas”, Phys. Lett. A, 362 (2007), 283–288 | DOI | Zbl
[6] Y. T. Gao, B. Tian, “Cosmic Dust-Ion-Acoustic Waves, Spherical Modified Kadomtsev–Petviashvili Model, and Symbolic Computation”, Phys. Plasmas, 13 (2006), 112901 | DOI
[7] Y. T. Gao, B. Tian, “Cylindrical Kadomtsev–Petviashvili Model, Nebulons, and Symbolic Computation for Cosmic Dust Ion-Acoustic Waves”, Phys. Lett. A, 349 (2006), 314–319 | DOI
[8] B. Tian, Y. T. Gao, “Cylindrical Nebulons, Symbolic Computation, and Backlund Transformation for the Cosmic Dust Acoustic Waves”, Phys. Plasmas, 12 (2005), 070703 | DOI | MR
[9] B. Tian, G. M. We, C. Y. Zhang, W. R. Shan, Y. T. Gao, “Transformations for a Generalized Variable-Coefficient Korteweg-de Vries Model from Blood Vessels, Bose–Einstein Condensates, Rods and Positons with Symbolic Computation”, Phys. Lett. A, 356 (2006), 8–16 | DOI | Zbl
[10] Y. T. Gao, B. Tian, “$(3+1)$-Dimensional Generalized Johnson Model for Cosmic Dust-Ion-Acoustic Nebulons with Symbolic Computation”, Phys. Plasmas (Lett.), 13 (2006), 120703
[11] B. Tian, Y. T. Gao, “Spherical Nebulons and Backlund Transformation for a Space or Laboratory Unmagnetized Dusty Plasma with Symbolic Computation”, Eur. Phys. J. D, 33 (2005), 59–65 | DOI
[12] Y. T. Gao, B. Tian, “Reply to “Comment on: ‘Spherical Kadomtsev–Petviashvili Equation and Nebulons for Dust Ion-Acoustic Waves with Symbolic Computation’ ” [Phys. Lett. A 361, 520 (2007)]”, Phys. Lett. A, 361 (2007), 523–528 | DOI | Zbl
[13] Y. Gao, B. Tian, “On the Nonplanar Dust-Ion-Acoustic Waves in Cosmic Dusty Plasmas with Transverse Perturbations”, Euro. Phys. Lett., 77 (2007), 15001 | DOI
[14] B. Tian, Y. T. Gao, “Symbolic-Computation Study of the Perturbed Nonlinear Schrödinger Model in Inhomogeneous Optical Fibers”, Phys. Lett. A, 342 (2005), 228–236 | DOI | Zbl
[15] B. Tian, Y. T. Gao, H. W. Zhu, “Variable-Coefficient Higher-Order Nonlinear Schrödinger Model in Optical Fibers: Variable-Coefficient Bilinear Form, Backlund Transformation, Brightens, and Symbolic Computation”, Phys. Lett. A, 366 (2007), 223–229 | DOI | Zbl
[16] K. C. Chan, H. F. Liu, “Short Pulse Generation by Higher Order Soliton-Effect Compression: Effects of Optical Fiber Characteristics”, IEEE J. Quantum Electron., 31 (1995), 2226–2235 | DOI
[17] J. P. Gordon, “Interaction Forces among Solitons in Optical Fibers”, Opt. Lett., 8 (1983), 596–598 | DOI
[18] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers”, Phys. Rev. Lett., 45 (1980), 1095–1098 | DOI
[19] T. Kanna, E. N. Tsoy, N. Akhmediev, “On the Solution of Multicomponent Nonlinear Schrödinger Equations”, Phys. Lett. A, 330 (2004), 224–229 | DOI | MR | Zbl
[20] F. K. Abdullaev, J. Garnier, “Dynamical Stabilization of Solitons in Cubic-Quintic Nonlinear Schrödinger Model”, Phys. Rev. E, 72 (2005), 035603 | DOI | MR
[21] G. P. Agrawal, Nonlinear Fiber Optics, Academic, San Diego, 2001
[22] A. Hasegawa, F. Tappert, “Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I: Anomalous Dispersion”, Appl. Phys. Lett., 23 (1973), 142–144 | DOI
[23] A. I. Maimistov, A. M. Basharov, Nonlinear Optical Waves, Springer-Verlag, Berlin, 1999 | MR
[24] L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York, 1975
[25] S. L. McCall, E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light”, Phys. Rev. Lett., 18 (1967), 908–911 | DOI
[26] G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York, 1980 | MR | Zbl
[27] K. Porsezian, K. Nakkeeran, “Optical Soliton Propagation in a Coupled System of the Nonlinear Schrödinger Equation and the Maxwell–Bloch Equations”, J. Mod. Opt., 42 (1995), 1953–1958 | DOI | MR | Zbl
[28] K. Porsezian, “Optical Solitons in Some SIT Type Equations”, J. Mod. Opt., 47 (2000), 1635–1644 | MR | Zbl
[29] K. Porsezian, K. Nakkeeran, “Solitons in Random Nonuniform Erbium Doped Nonlinear Fiber Media”, Phys. Lett. A, 206 (1995), 183–186 | DOI | MR
[30] J. S. He, Y. Cheng, Y. S. Li, “The Darboux Transformation for NLS-MB Equations”, Commun. Theor. Phys., 38 (2002), 493–496 | MR
[31] S. Kakei, J. Satsuma, “Multi-Soliton Solutions of a Coupled System of the Nonlinear Schrodinger Equation and the Maxwell–Bloch Equations”, J. Phys. Soc. Jpn., 63 (1994), 885–894 | DOI | MR | Zbl
[32] A. Mahalingam, K. Porsezian, M. S. Mani Rajan, A. Uthayakumar, “Propagation of Dispersion-Nonlinearity-Managed Solitons in an Inhomogeneous Erbium-Doped Fiber System”, J. Phys. A: Math. Theor., 42 (2009), 165101 | DOI | MR | Zbl
[33] N. Vidhya, A. Mahalingam, A. Uthayakumar, “Propagation of Solitary Waves in Inhomogeneous Erbium-Doped Fibers with Third-Order Dispersion, Self-Steepening and Gain/Loss”, J. Mod. Opt., 56 (2009), 607–614 | DOI | Zbl
[34] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-Evolution Equations of Physical Significance”, Phys. Rev. Lett., 31 (1973), 125–127 | DOI | MR | Zbl
[35] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 2003 | MR | Zbl
[36] L. Wang, Y. T. Gao, X. L. Gai, Z. Y. Sun, “Inelastic Interactions and Double Wronskian Solutions for the Whitham–Broer–Kaup Model in Shallow Water”, Phys. Scripta, 80 (2009), 065017 | DOI | Zbl
[37] X. Yu, Y. T. Gao, Z. Y. Sun, Y. Liu, “Wronskian Solutions and Integrability for a Generalized Variable-coefficient Forced Korteweg-de Vries Equation in Fluids”, Nonlinear Dynamics, 67 (2012), 1023–1030 | DOI | Zbl
[38] X. Yu, Y. T. Gao, Z. Y. Sun, Y. Liu, “Solitonic Propagation and Interaction for a Generalized Variable-coefficient Forced Korteweg-de Vries Equation in Fluids”, Phys. Rev. E, 83 (2011), 056601 | DOI
[39] Z. Y. Sun, Y. T. Gao, X. Yu, Y. Liu, “Amplification of Nonautonomous Solitons in the Bose–Einste Condensates and Nonlinear Optics”, Europhys. Lett., 93 (2011), 40004 | DOI
[40] Z. Y. Sun, Y. T. Gao, Y. Liu, X. Yu, “Soliton Management for a Variable-coefficient Modified Kortewegde Vries Equation”, Phys Rev. E, 84 (2011), 026606 | DOI
[41] L. Wang, Y. T. Gao, X. L. Gai, “Odd-Soliton-Like Solutions for the Variable-Coefficient Variant Boussinesq Model in the Long Gravity Waves”, Z. Naturforsch. A, 65 (2010), 818–828