Application of the spherical metric tensor to grid adaptation and the solution of applied problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 653-670 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New results concerning the construction and application of adaptive numerical grids for solving applied problems are presented. The grid generation technique is based on the numerical solution of inverted Beltrami and diffusion equations for a monitor metric. The capabilities of the spherical metric tensor as applied to adaptive grid generation are examined in detail. Adaptive hexahedral grids are used to numerically solve a boundary value problem for the three-dimensional heat equation with a moving boundary in a continuous medium with discontinuous thermophysical parameters; this problem models the interaction of a thermal wave with a thermocouple embedded in the solid.
@article{ZVMMF_2012_52_4_a5,
     author = {A. V. Kofanov and V. D. Liseikin and A. D. Rychkov},
     title = {Application of the spherical metric tensor to grid adaptation and the solution of applied problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {653--670},
     year = {2012},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a5/}
}
TY  - JOUR
AU  - A. V. Kofanov
AU  - V. D. Liseikin
AU  - A. D. Rychkov
TI  - Application of the spherical metric tensor to grid adaptation and the solution of applied problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 653
EP  - 670
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a5/
LA  - ru
ID  - ZVMMF_2012_52_4_a5
ER  - 
%0 Journal Article
%A A. V. Kofanov
%A V. D. Liseikin
%A A. D. Rychkov
%T Application of the spherical metric tensor to grid adaptation and the solution of applied problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 653-670
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a5/
%G ru
%F ZVMMF_2012_52_4_a5
A. V. Kofanov; V. D. Liseikin; A. D. Rychkov. Application of the spherical metric tensor to grid adaptation and the solution of applied problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 653-670. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a5/

[1] Liseikin V. D., Grid generation methods, Ed. II, Springer, Berlin, 2010 | MR | Zbl

[2] Liseikin V. D., Shokin Yu. I., Vaseva I. A., Likhanova Yu. V., Tekhnologiya postroeniya raznostnykh setok, Nauka, Novosibirsk, 2009

[3] Vaseva I. A., Kofanov A. V., Liseikin V. D., Likhanova Yu. V., Kharitonchik A. M., “Tekhnologiya postroeniya prostranstvennykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 1–19 | MR

[4] Liseikin V. D., A computational differential geometry approach to grid generation, Ed. II, Springer, Berlin, 2007 | MR | Zbl

[5] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR

[6] Danaev N. T., Liseikin V. D., Yanenko N. N., “O chislennom raschete dvizheniya vyazkogo gaza vokrug tela vrascheniya na podvizhnoi setke”, Chisl. metody mekhan. sploshnoi sredy, 11, no. 1, ITPM SO AN SSSR, Novosibirsk, 1980

[7] Winslow A. M., Adaptive mesh zoning by the equipotential method, UCID-19062, Lawrence Livermore National Laboratories, 1981

[8] J. F. Thompson, B. K. Soni, N. P. Weatherhill (eds.), Handbook of grid generation, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[9] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1596–1616 | MR | Zbl

[10] Garanzha V. A., “Barernyi metod postroeniya kvaziizometricheskikh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[11] Winslow A. M., “Equipotential zoning of two-dimensional meshes”, J. Comput. Phys., 1 (1967), 149–172 | DOI | MR

[12] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[13] Khakimzyanov G. S., Shokin Yu. I., Barakhnin V. B., Shokina N. Yu., Chislennoe modelirovanie techenii zhidkosti s poverkhnostnymi volnami, Izd-vo SO RAN, Novosibirsk, 2001

[14] Borovkova T. V., Yeliseyev Y. N., Lopukhov I. I., “Mathematical modeling of contact thermocouple”, Phys. of Particl. Nuclei Lett., 1:3 (2008), 274–277 | DOI

[15] Franco G. A., Caron E., Wells M. A., “Quantification of the surface temperature discrepancy caused by surface thermocouples and methods for compensation”, Metallurgical and Materials Transactions B, 338 (2007), 949–956 | DOI

[16] Zenin A. A., “Ob oshibkakh termoparnykh izmerenii plamen”, Inzhenerno-fiz. zh., 5:5 (1962), 67–74

[17] Zenin A. A., “O teploobmene termopar v volne goreniya tverdogo topliva”, PMTF, 1963, no. 5, 125–131

[18] Asay B. W., Son S. F., Dickson P. M., Smilowitz L. B., Henson B. F., “An investigation of the dynamic response of thermocouples in inert and reacted condensed phase energetic materials”, Propellants, Explosives, Pyrotechnics, 3:30 (2005), 199–208 | DOI

[19] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967