Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 628-652 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic solution of a singularly perturbed linear-quadratic optimal control problem with discontinuous coefficients is constructed by directly substituting an boundary-layer asymptotic expansion of the solution into the condition of the problem and considering a series of problems for finding the asymptotic terms. The error in the approximate solution is estimated. It is shown that the values of the minimized functional do not increase when the next approximations of the optimal control are used.
@article{ZVMMF_2012_52_4_a4,
     author = {G. A. Kurina and Nguy\^en Thị Ho\`ai},
     title = {Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {628--652},
     year = {2012},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a4/}
}
TY  - JOUR
AU  - G. A. Kurina
AU  - Nguyên Thị Hoài
TI  - Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 628
EP  - 652
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a4/
LA  - ru
ID  - ZVMMF_2012_52_4_a4
ER  - 
%0 Journal Article
%A G. A. Kurina
%A Nguyên Thị Hoài
%T Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 628-652
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a4/
%G ru
%F ZVMMF_2012_52_4_a4
G. A. Kurina; Nguyên Thị Hoài. Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 628-652. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a4/

[1] Aschepkov L. T., Optimalnoe upravlenie razryvnymi sistemami, Nauka, Novosibirsk, 1987

[2] Belokopytov S. V., Dmitriev M. G., “Direct scheme in optimal control problems with fast and slow motions”, Syst. and Contr. Lett., 8:2 (1986), 129–135 | DOI | MR | Zbl

[3] Belokopytov S. V., Dmitriev M. G., “Reshenie klassicheskikh zadach optimalnogo upravleniya s pogransloem”, Avtomatika i telemekhan., 1989, no. 7, 71–82 | MR | Zbl

[4] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhan., 2006, no. 1, 3–51 | MR | Zbl

[5] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[6] Kurina G. A., Nguen T. Kh., “Priblizhenie nulevogo poryadka asimptotiki resheniya singulyarno vozmuschennoi lineino-kvadratichnoi zadachi upravleniya s razryvnymi koeffitsientami”, Modelirovanie i analiz inform. sistem, 17:1 (2010), 93–116 | MR

[7] Pokornaya I. Yu., Metod kollokatsii resheniya singulyarno vozmuschennykh kraevykh zadach s pomoschyu kubicheskikh splainov minimalnogo defekta, Diss. ... kand. fiz.-matem. nauk, Voronezh, 1996

[8] Melnik T. A., “Asimptotika reshenii razryvnykh singulyarno vozmuschennykh kraevykh zadach”, Ukrainskii matem. zh., 51:6 (1999), 861–864 | MR

[9] Lellep Ya., Osnovy matematicheskoi teorii optimalnogo upravleniya, Tartuskii gos. un-t, Tartu, 1981

[10] Kurina G. A., “Obratimost neotritsatelno gamiltonovykh operatorov v gilbertovom prostranstve”, Differents. ur-niya, 37:6 (2001), 839–841 | MR | Zbl

[11] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[12] Kurina G. A., Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya s uravneniem sostoyaniya, ne razreshennym otnositelno proizvodnoi, Diss. ... dok. fiz.-matem. nauk, Voronezh, 1992