@article{ZVMMF_2012_52_4_a2,
author = {A. N. Daryina and A. F. Izmailov},
title = {On active-set methods for the quadratic programming problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {602--613},
year = {2012},
volume = {52},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a2/}
}
TY - JOUR AU - A. N. Daryina AU - A. F. Izmailov TI - On active-set methods for the quadratic programming problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 602 EP - 613 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a2/ LA - ru ID - ZVMMF_2012_52_4_a2 ER -
A. N. Daryina; A. F. Izmailov. On active-set methods for the quadratic programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4, pp. 602-613. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a2/
[1] Izmailov A. F., Solodov M. F., Chislennye metody optimizatsii, Izd. 2-e, pererab. i dop., Fizmatlit, M., 2008
[2] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[3] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl
[4] Daryina A. N., Izmailov A. F., Solodov M. V., “Numerical results for a globalized active-set Newton method for mixed complementarity problems”, Comput. Appl. Math., 24:2 (2005), 293–316 | DOI | MR | Zbl
[5] Daryina A. N., Izmailov A. F., Solodov M. V., “A class of active-set Newton methods for mixed complementarity problem”, SIAM J. Optim., 15:2 (2004), 409–429 | DOI | MR | Zbl
[6] Darina A. N., Izmailov A. F., Solodov M. V., “Smeshannye komplementarnye zadachi: regulyarnost, otsenki rasstoyaniya do resheniya i nyutonovskie metody”, Zh. vychisl. matem. matem. fiz., 44:1 (2004), 51–69 | MR
[7] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR | Zbl
[8] Billups S. C., Algorithms for complementarity problems and generalized equations, PhD thesis, Madison, 1995, 159 pp. | MR
[9] Tseng P., “Growth behavior of a class of merit functions for the nonlinear complementarity problem”, J. Optimizat. Theory Appl., 89 (1996), 17–37 | DOI | MR | Zbl
[10] Kanzow C., Fukushima M., “Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities”, Math. Program., 83 (1998), 55–87 | MR | Zbl
[11] Peng J.-M., “Equivalence of variational inequality problems to unconsrtained optimization”, Math. Program., 78 (1997), 347–355 | MR | Zbl
[12] Billups S. C., “A homothopy-based algorithm for mixed complementarity problems”, SIAM J. Optimizat., 12:3 (2002), 583–605 | DOI | MR | Zbl
[13] De Luca T., Facchinei F., Kanzow C., “A theoretical and numerical comparison of some semismooth algorithms for complementarity problems”, Comput. Optim. Appl., 16 (2000), 173–205 | DOI | MR | Zbl
[14] Darina A. N., Izmailov A. F., “Polugladkii metod Nyutona dlya zadachi kvadratichnogo programmirovaniya s prostymi ogranicheniyami”, Zh. vychisl. matem. matem. fiz., 49:10 (2009), 1785–1795 | MR
[15] Dolan E., Moré J., “Benchmarking optimization software with performance profiles”, Math. Program., 91:2 (2002), 201–213 | DOI | MR | Zbl
[16] Nocedal J., Wright S. J., Numerical optimization, Second edition, Springer, New York, 2006 | MR