On the optimal order of accuracy of an approximate solution to the Symm's integral equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 472-482 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_3_a7,
     author = {S. G. Solodkii and E. V. Semenova},
     title = {On the optimal order of accuracy of an approximate solution to the {Symm's} integral equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {472--482},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/}
}
TY  - JOUR
AU  - S. G. Solodkii
AU  - E. V. Semenova
TI  - On the optimal order of accuracy of an approximate solution to the Symm's integral equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 472
EP  - 482
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/
LA  - ru
ID  - ZVMMF_2012_52_3_a7
ER  - 
%0 Journal Article
%A S. G. Solodkii
%A E. V. Semenova
%T On the optimal order of accuracy of an approximate solution to the Symm's integral equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 472-482
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/
%G ru
%F ZVMMF_2012_52_3_a7
S. G. Solodkii; E. V. Semenova. On the optimal order of accuracy of an approximate solution to the Symm's integral equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 472-482. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/

[1] Saranen J., Vainikko G., Periodic integral and pseudodifferential equations with numerical approxnhation, Springer, Berlin, 2002 | MR | Zbl

[2] Vainikko G.M., Khyamarik U.A., “Proektsionnye metody i samoregulyarizatsiya nekorrektnykh zadach”, Izv. vuzov. Matematika, 29:10 (1985), 3–17 | MR

[3] Pereverzev S.V., “On the characterization of selfregularization properties of a fully discrete projection method for Symm's integral equation”, J. Integral Equat. Appl., 12:2 (2000), 113–130 | DOI | MR | Zbl

[4] Solodky S.G., Lebedeva E.V., “Error bounds of a fully discrete projection method for Symm's integral equation”, Comput. Method Appl. Math., 76:3 (2007), 255–263 | MR

[5] Saranen J., “A modified discrete spectral collocation method for first kind integral equations with logarithmic kernel”, J. Integral Equat. Appl., 5:4 (1993), 547–567 | DOI | MR | Zbl

[6] Bruckner G., Prossdorf S., Veinikko G., “Error bounds of discretization methods for boundary integral equations with noisy data”, Appl. Analys., 63:1-2 (1996), 25–37 | DOI | MR | Zbl

[7] Engl H.W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer Ac. Publ., Dordrecht–Boston–London, 1996 | MR | Zbl

[8] Harbrecht H., Pereverzev S., Schneider R., “Self-regularization by projection for noisy pseudodifferential equations of negative order”, Numer. Math., 95:1 (2003), 123–143 | DOI | MR | Zbl

[9] Pereverzev S., Schock E., “On the adaptive selection of the parameter in regularization of ill-posed problems”, SIAM J. Numer. Analys., 43:5 (2005), 2060–2076 | DOI | MR | Zbl

[10] Hsigo G.C., Wendland W.L., “A finite element method for some integral equations of the first kind”, J. Math. Analys. Appl., 58 (1977), 449–481 | DOI | MR

[11] Mathe P., Pereverzev S.V., “Optimal discretization of inverse problems in Hilbert scales. Regularization and selfregularization of projection methods”, SIAM J. Numer. Analys., 38:6 (2001), 1999–2021 | DOI | MR | Zbl

[12] Vainikko G.M., Veretennikov A.Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR