@article{ZVMMF_2012_52_3_a7,
author = {S. G. Solodkii and E. V. Semenova},
title = {On the optimal order of accuracy of an approximate solution to the {Symm's} integral equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {472--482},
year = {2012},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/}
}
TY - JOUR AU - S. G. Solodkii AU - E. V. Semenova TI - On the optimal order of accuracy of an approximate solution to the Symm's integral equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 472 EP - 482 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/ LA - ru ID - ZVMMF_2012_52_3_a7 ER -
%0 Journal Article %A S. G. Solodkii %A E. V. Semenova %T On the optimal order of accuracy of an approximate solution to the Symm's integral equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 472-482 %V 52 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/ %G ru %F ZVMMF_2012_52_3_a7
S. G. Solodkii; E. V. Semenova. On the optimal order of accuracy of an approximate solution to the Symm's integral equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 472-482. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a7/
[1] Saranen J., Vainikko G., Periodic integral and pseudodifferential equations with numerical approxnhation, Springer, Berlin, 2002 | MR | Zbl
[2] Vainikko G.M., Khyamarik U.A., “Proektsionnye metody i samoregulyarizatsiya nekorrektnykh zadach”, Izv. vuzov. Matematika, 29:10 (1985), 3–17 | MR
[3] Pereverzev S.V., “On the characterization of selfregularization properties of a fully discrete projection method for Symm's integral equation”, J. Integral Equat. Appl., 12:2 (2000), 113–130 | DOI | MR | Zbl
[4] Solodky S.G., Lebedeva E.V., “Error bounds of a fully discrete projection method for Symm's integral equation”, Comput. Method Appl. Math., 76:3 (2007), 255–263 | MR
[5] Saranen J., “A modified discrete spectral collocation method for first kind integral equations with logarithmic kernel”, J. Integral Equat. Appl., 5:4 (1993), 547–567 | DOI | MR | Zbl
[6] Bruckner G., Prossdorf S., Veinikko G., “Error bounds of discretization methods for boundary integral equations with noisy data”, Appl. Analys., 63:1-2 (1996), 25–37 | DOI | MR | Zbl
[7] Engl H.W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer Ac. Publ., Dordrecht–Boston–London, 1996 | MR | Zbl
[8] Harbrecht H., Pereverzev S., Schneider R., “Self-regularization by projection for noisy pseudodifferential equations of negative order”, Numer. Math., 95:1 (2003), 123–143 | DOI | MR | Zbl
[9] Pereverzev S., Schock E., “On the adaptive selection of the parameter in regularization of ill-posed problems”, SIAM J. Numer. Analys., 43:5 (2005), 2060–2076 | DOI | MR | Zbl
[10] Hsigo G.C., Wendland W.L., “A finite element method for some integral equations of the first kind”, J. Math. Analys. Appl., 58 (1977), 449–481 | DOI | MR
[11] Mathe P., Pereverzev S.V., “Optimal discretization of inverse problems in Hilbert scales. Regularization and selfregularization of projection methods”, SIAM J. Numer. Analys., 38:6 (2001), 1999–2021 | DOI | MR | Zbl
[12] Vainikko G.M., Veretennikov A.Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR