@article{ZVMMF_2012_52_3_a6,
author = {V. M. Goloviznin and A. A. Kanaev},
title = {High-resolution numerical algorithm for one-dimensional scalar conservation laws with a~constrained solution},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {461--471},
year = {2012},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/}
}
TY - JOUR AU - V. M. Goloviznin AU - A. A. Kanaev TI - High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 461 EP - 471 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/ LA - ru ID - ZVMMF_2012_52_3_a6 ER -
%0 Journal Article %A V. M. Goloviznin %A A. A. Kanaev %T High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 461-471 %V 52 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/ %G ru %F ZVMMF_2012_52_3_a6
V. M. Goloviznin; A. A. Kanaev. High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/
[1] Gwo J.P., Jardine P.M., Wilson G.V., Yeh G.T., “Using multiregion model to study the effect of advective and diffusive mass transfer on local physical nonequilibrium and solute mobility in a structured soil”, Water Resources Research, 32:3 (1996), 561–570 | DOI
[2] Pruess K., “A mechanistic model water seepage through thick unsaturated zones in fractured rocks of low matrix permeability”, Water Resources Research, 35:4 (1999), 1039–1051 | DOI
[3] Barenblatt G.I., Entov V.M., Ryzhik V.M., Dvizhenie zhidkostei i gazov v poristykh plastakh, Nedra, M., 1984
[4] Konovalov A.N., Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti, Nauka, Novosibirsk, 1988
[5] Samsonov B.G., Samsonova L.M., Migratsiya veschestva i reshenie gidro-geologicheskikh zadach, Nedra, M., 1987
[6] Selyakov V.I., Kadet V.V., Perkolyatsionnye modeli protsessv perenosa v mikroneodnorodnykh sredakh, Nedra, M., 1995
[7] Zakirov S.N. i dr., Mnogomernaya i mnogokomponentnaya filtratsiya, Nedra, M., 1988
[8] Kollinz Yu.R., Techenie zhidkostei cherez poristye materialy, Mir, M., 1964
[9] Nigmatulin R.I., Dinamika mnogofaznykh sred, Nauka, M., 1987
[10] Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A., Mekhanika nasyschennykh poristykh sred, Nedra, M., 1970
[11] Tsypkin G.G., “Analiticheskoe reshenie nelineinoi zadachi razlozheniya gazovogo gidrata v plaste”, Mekhan. zhidkosti i gaza, 2007, no. 5, 133–142
[12] Tsypkin G.G., “Inzhektsiya rastvora soli v geotermalnyi rezervuar, nasyschennyi peregretym parom”, Mekhan. zhidkosti i gaza, 2008, no. 5, 120–131
[13] Tsypkin G.G., “Vliyanie kapillyarnykh sil na raspredelenie vlagonasyschennosti pri protaivanii merzlogo grunta”, Mekhan. zhidkosti i gaza, 2010, no. 6, 122–132
[14] Boris J.P., Book D.J., “Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 132:2 (1997), 172–186 | DOI | MR
[15] Fedkiw R.P., Merriman B., Osher S., “Efficient characteristic projection in upwind difference schemes for hyperbolic systems: the complementary projection method”, J. Comput. Phys., 141:1 (1998), 22–36 | DOI | MR | Zbl
[16] Harten A., Engquist B., Osher S., Chakravarthy S.R., “Uniformly high order accurate essentially non-oscillatory schemes. III”, J. Comput. Phys., 71:2 (1987), 231–303 | DOI | MR | Zbl
[17] Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E., “High-resolution nonoscillatory central schemes with non-staggered grids of hyperbolic conservation laws”, SIAM J. Numer. Analys., 35:6 (1998), 2147–2168 | DOI | MR | Zbl
[18] Kurganov A., Tadmor E., “New high-resolution central schemes for nonlinear conservation laws and convection; diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[19] Li Y., “Wavenumber-extended high-order upwind-biased finite-difference shemes for convective scalar transport”, J. Comput. Phys., 133:2 (1997), 235–255 | DOI | MR | Zbl
[20] Marano S., Franceschetti M., “Ray propagation in a random lattice: a maximum entropy, anomalous diffusion Process”, IEEE Trans. Antennas and Propagation, 53:6 (2005), 1888–1896 | DOI | MR
[21] Mazzia A., Bergamaschi L., Putti M., “A time-splitting technique for the advection-dispersion equation in ground-water”, J. Comput. Phys., 157:1 (2000), 181–198 | DOI | MR | Zbl
[22] Mohanty B.P., Bowman R.S., Hendrickx J.M.H., van Genuchten M.T., “New piecewise-continuous hydraulic functions for modeling preferential flow in intermitten-flood-arranged field”, Water Resources Research, 33:9 (1997), 15 | DOI | MR
[23] Sheu T.W.H., Wang S.K., Tsai S.F., “Development of a high-resolution scheme for a multi-dimensional advection-diffusion equation”, J. Comput. Phys., 144:1 (1998), 1–16 | DOI
[24] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes. II”, J. Comput. Phys., 89:1 (1989), 32–78 | DOI | MR | Zbl
[25] Yavneh I., “Analysis of a fourth-order compact scheme for convection–diffusion”, J. Comput. Phys., 133:2 (1997), 361–364 | DOI | MR | Zbl
[26] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[27] Goloviznin V.M., Kanaev A.A., “The principle of minumun of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations”, J. Comput. Math. and Math. Phys., 51:5 (2011), 824–839 | DOI | MR | Zbl
[28] Goloviznin V.M., “A balance-characteristic method for the numerical solution of one-dimensional equations of gas dynamics in Euler variables”, Math. Model., 18:11 (2006), 14–30 | MR | Zbl
[29] Goloviznin V.M., Karabasov S.A., Digital transport algorithm for hyperbolic equations, Yokohama Publishers, Yokohama, 2006 | MR | Zbl
[30] Goloviznin V.M., Karabasov S.A., “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl
[31] Goloviznin V.M., Karabasov S.A., Kobrinskii I.M., “Balance-characteristic schemes with separated conservative and flux variables”, Math. Model., 15:9 (2003), 29–48 | MR | Zbl
[32] Goloviznin V.M., Samarskii A.A., “Some properties of the difference scheme “cabaret””, Math. Model., 10:1 (1998), 101–116 | MR | Zbl
[33] Goloviznin V.M., Samarskii A.A., “Finite approximation of convective transport with a space splitting time derivative”, Math. Model., 10:1 (1998), 86–100 | MR | Zbl
[34] Goloviznin V.M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 459–464
[35] Goloviznin V.M., Karabasov S.A., “Diskretnye matematicheskie modeli dvukhfaznoi filtratsii s prostranstvennym rasschepleniem vremennói poizvodnoi”, Izv. RAN. Energetika, 2000, no. 4
[36] Goloviznin V.M., Karabasov S.A., Nekotorye primery chislennogo modelirovaniya dvumernoi filtratsii, IBRAE RAN, M., 1998
[37] Goloviznin V.M., Karabasov S.A., “Nelineinaya korrektsiya skhemy “KABARE””, Matem. modelirovanie, 10:12 (1998), 107–123
[38] Goloviznin V.M., Semenov V.N., Kanaev A.A., Kondakov V.G., Korotkin I.A., Novyi vychislitelnyi algoritm dlya matematicheskogo modelirovaniya prosachivaniya vlagi skvoz nenasyschennuyu treschinovatuyu geologicheskuyu sredu s nizkoi pronitsaemostyu, IBRAE RAN, M., 2006
[39] Pruess K., Oldenburg C.M., Moridis G.J., TOUGH 2, User's Guide Version 2, Lawrence Berkeley National Laboratory, Berkeley, 1999
[40] Fischer U., Dury O., Fluhler H., van Genuchten M.T., “Modeling nonwetting-phase relative permeability accounting for a discontinuous nonwetting phase”, Soil Sci. Society of America, 61:5 (1997), 15