High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 461-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The CABARET computational algorithm is generalized to one-dimensional scalar quasilinear hyperbolic partial differential equations with allowance for inequality constraints on the solution. This generalization can be used to analyze seepage of liquid radioactive wastes through the unsaturated zone.
@article{ZVMMF_2012_52_3_a6,
     author = {V. M. Goloviznin and A. A. Kanaev},
     title = {High-resolution numerical algorithm for one-dimensional scalar conservation laws with a~constrained solution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {461--471},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/}
}
TY  - JOUR
AU  - V. M. Goloviznin
AU  - A. A. Kanaev
TI  - High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 461
EP  - 471
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/
LA  - ru
ID  - ZVMMF_2012_52_3_a6
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%A A. A. Kanaev
%T High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 461-471
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/
%G ru
%F ZVMMF_2012_52_3_a6
V. M. Goloviznin; A. A. Kanaev. High-resolution numerical algorithm for one-dimensional scalar conservation laws with a constrained solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a6/

[1] Gwo J.P., Jardine P.M., Wilson G.V., Yeh G.T., “Using multiregion model to study the effect of advective and diffusive mass transfer on local physical nonequilibrium and solute mobility in a structured soil”, Water Resources Research, 32:3 (1996), 561–570 | DOI

[2] Pruess K., “A mechanistic model water seepage through thick unsaturated zones in fractured rocks of low matrix permeability”, Water Resources Research, 35:4 (1999), 1039–1051 | DOI

[3] Barenblatt G.I., Entov V.M., Ryzhik V.M., Dvizhenie zhidkostei i gazov v poristykh plastakh, Nedra, M., 1984

[4] Konovalov A.N., Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti, Nauka, Novosibirsk, 1988

[5] Samsonov B.G., Samsonova L.M., Migratsiya veschestva i reshenie gidro-geologicheskikh zadach, Nedra, M., 1987

[6] Selyakov V.I., Kadet V.V., Perkolyatsionnye modeli protsessv perenosa v mikroneodnorodnykh sredakh, Nedra, M., 1995

[7] Zakirov S.N. i dr., Mnogomernaya i mnogokomponentnaya filtratsiya, Nedra, M., 1988

[8] Kollinz Yu.R., Techenie zhidkostei cherez poristye materialy, Mir, M., 1964

[9] Nigmatulin R.I., Dinamika mnogofaznykh sred, Nauka, M., 1987

[10] Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A., Mekhanika nasyschennykh poristykh sred, Nedra, M., 1970

[11] Tsypkin G.G., “Analiticheskoe reshenie nelineinoi zadachi razlozheniya gazovogo gidrata v plaste”, Mekhan. zhidkosti i gaza, 2007, no. 5, 133–142

[12] Tsypkin G.G., “Inzhektsiya rastvora soli v geotermalnyi rezervuar, nasyschennyi peregretym parom”, Mekhan. zhidkosti i gaza, 2008, no. 5, 120–131

[13] Tsypkin G.G., “Vliyanie kapillyarnykh sil na raspredelenie vlagonasyschennosti pri protaivanii merzlogo grunta”, Mekhan. zhidkosti i gaza, 2010, no. 6, 122–132

[14] Boris J.P., Book D.J., “Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 132:2 (1997), 172–186 | DOI | MR

[15] Fedkiw R.P., Merriman B., Osher S., “Efficient characteristic projection in upwind difference schemes for hyperbolic systems: the complementary projection method”, J. Comput. Phys., 141:1 (1998), 22–36 | DOI | MR | Zbl

[16] Harten A., Engquist B., Osher S., Chakravarthy S.R., “Uniformly high order accurate essentially non-oscillatory schemes. III”, J. Comput. Phys., 71:2 (1987), 231–303 | DOI | MR | Zbl

[17] Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E., “High-resolution nonoscillatory central schemes with non-staggered grids of hyperbolic conservation laws”, SIAM J. Numer. Analys., 35:6 (1998), 2147–2168 | DOI | MR | Zbl

[18] Kurganov A., Tadmor E., “New high-resolution central schemes for nonlinear conservation laws and convection; diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[19] Li Y., “Wavenumber-extended high-order upwind-biased finite-difference shemes for convective scalar transport”, J. Comput. Phys., 133:2 (1997), 235–255 | DOI | MR | Zbl

[20] Marano S., Franceschetti M., “Ray propagation in a random lattice: a maximum entropy, anomalous diffusion Process”, IEEE Trans. Antennas and Propagation, 53:6 (2005), 1888–1896 | DOI | MR

[21] Mazzia A., Bergamaschi L., Putti M., “A time-splitting technique for the advection-dispersion equation in ground-water”, J. Comput. Phys., 157:1 (2000), 181–198 | DOI | MR | Zbl

[22] Mohanty B.P., Bowman R.S., Hendrickx J.M.H., van Genuchten M.T., “New piecewise-continuous hydraulic functions for modeling preferential flow in intermitten-flood-arranged field”, Water Resources Research, 33:9 (1997), 15 | DOI | MR

[23] Sheu T.W.H., Wang S.K., Tsai S.F., “Development of a high-resolution scheme for a multi-dimensional advection-diffusion equation”, J. Comput. Phys., 144:1 (1998), 1–16 | DOI

[24] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes. II”, J. Comput. Phys., 89:1 (1989), 32–78 | DOI | MR | Zbl

[25] Yavneh I., “Analysis of a fourth-order compact scheme for convection–diffusion”, J. Comput. Phys., 133:2 (1997), 361–364 | DOI | MR | Zbl

[26] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[27] Goloviznin V.M., Kanaev A.A., “The principle of minumun of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations”, J. Comput. Math. and Math. Phys., 51:5 (2011), 824–839 | DOI | MR | Zbl

[28] Goloviznin V.M., “A balance-characteristic method for the numerical solution of one-dimensional equations of gas dynamics in Euler variables”, Math. Model., 18:11 (2006), 14–30 | MR | Zbl

[29] Goloviznin V.M., Karabasov S.A., Digital transport algorithm for hyperbolic equations, Yokohama Publishers, Yokohama, 2006 | MR | Zbl

[30] Goloviznin V.M., Karabasov S.A., “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl

[31] Goloviznin V.M., Karabasov S.A., Kobrinskii I.M., “Balance-characteristic schemes with separated conservative and flux variables”, Math. Model., 15:9 (2003), 29–48 | MR | Zbl

[32] Goloviznin V.M., Samarskii A.A., “Some properties of the difference scheme “cabaret””, Math. Model., 10:1 (1998), 101–116 | MR | Zbl

[33] Goloviznin V.M., Samarskii A.A., “Finite approximation of convective transport with a space splitting time derivative”, Math. Model., 10:1 (1998), 86–100 | MR | Zbl

[34] Goloviznin V.M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 459–464

[35] Goloviznin V.M., Karabasov S.A., “Diskretnye matematicheskie modeli dvukhfaznoi filtratsii s prostranstvennym rasschepleniem vremennói poizvodnoi”, Izv. RAN. Energetika, 2000, no. 4

[36] Goloviznin V.M., Karabasov S.A., Nekotorye primery chislennogo modelirovaniya dvumernoi filtratsii, IBRAE RAN, M., 1998

[37] Goloviznin V.M., Karabasov S.A., “Nelineinaya korrektsiya skhemy “KABARE””, Matem. modelirovanie, 10:12 (1998), 107–123

[38] Goloviznin V.M., Semenov V.N., Kanaev A.A., Kondakov V.G., Korotkin I.A., Novyi vychislitelnyi algoritm dlya matematicheskogo modelirovaniya prosachivaniya vlagi skvoz nenasyschennuyu treschinovatuyu geologicheskuyu sredu s nizkoi pronitsaemostyu, IBRAE RAN, M., 2006

[39] Pruess K., Oldenburg C.M., Moridis G.J., TOUGH 2, User's Guide Version 2, Lawrence Berkeley National Laboratory, Berkeley, 1999

[40] Fischer U., Dury O., Fluhler H., van Genuchten M.T., “Modeling nonwetting-phase relative permeability accounting for a discontinuous nonwetting phase”, Soil Sci. Society of America, 61:5 (1997), 15