@article{ZVMMF_2012_52_3_a5,
author = {V. V. Ostapenko},
title = {On the strong monotonicity of the {CABARET} scheme},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {447--460},
year = {2012},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a5/}
}
V. V. Ostapenko. On the strong monotonicity of the CABARET scheme. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 447-460. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a5/
[1] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978
[2] Kulikovskii A.G., Pogorelov N.V., Semenov F.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001
[3] Goloviznin V.M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 1–6
[4] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[5] Goloviznin V.M., Samarskii A.A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100
[6] Karabasov S.A., Goloviznin V.M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA Journal, 45:12 (2007), 2861–2871 | DOI
[7] Karabasov S.A., Berloff P.S., Goloviznin V.M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[8] Ostapenko V.V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl
[9] Godunov S.K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl
[10] Ostapenko V.V., “O monotonnosti raznostnykh skhem”, Sibirsk. matem. zh., 39:5 (1998), 1111–1126 | MR | Zbl
[11] Ostapenko V.V., “O silnoi monotonnosti trekhtochechnykh raznostnykh skhem”, Sibirsk. matem. zh., 39:6 (1998), 1357–1367 | MR | Zbl
[12] Liu X., Tadmor E., “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79 (1998), 397–425 | DOI | MR | Zbl
[13] Boris J.P., Book D.L., Hain K., “Flux-corrected transport. II. Generalizations of the method”, J. Comput. Phys., 18:3 (1975), 248–283 | DOI | MR | Zbl
[14] Kolgan V.P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1340–1345 | MR | Zbl
[15] Leer B., “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR
[16] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[17] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl