On the strong monotonicity of the CABARET scheme
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 447-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The strong monotonicity of the CABARET scheme with single flux correction is analyzed as applied to the linear advection equation. It is shown that the scheme is strongly monotone (has the NED property) at Courant numbers $r\in (0,0.5]$, for which it is monotone. Test computations illustrating this property of the CABARET scheme are presented.
@article{ZVMMF_2012_52_3_a5,
     author = {V. V. Ostapenko},
     title = {On the strong monotonicity of the {CABARET} scheme},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {447--460},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a5/}
}
TY  - JOUR
AU  - V. V. Ostapenko
TI  - On the strong monotonicity of the CABARET scheme
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 447
EP  - 460
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a5/
LA  - ru
ID  - ZVMMF_2012_52_3_a5
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%T On the strong monotonicity of the CABARET scheme
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 447-460
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a5/
%G ru
%F ZVMMF_2012_52_3_a5
V. V. Ostapenko. On the strong monotonicity of the CABARET scheme. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 447-460. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a5/

[1] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978

[2] Kulikovskii A.G., Pogorelov N.V., Semenov F.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[3] Goloviznin V.M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 1–6

[4] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[5] Goloviznin V.M., Samarskii A.A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100

[6] Karabasov S.A., Goloviznin V.M., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA Journal, 45:12 (2007), 2861–2871 | DOI

[7] Karabasov S.A., Berloff P.S., Goloviznin V.M., “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI

[8] Ostapenko V.V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl

[9] Godunov S.K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[10] Ostapenko V.V., “O monotonnosti raznostnykh skhem”, Sibirsk. matem. zh., 39:5 (1998), 1111–1126 | MR | Zbl

[11] Ostapenko V.V., “O silnoi monotonnosti trekhtochechnykh raznostnykh skhem”, Sibirsk. matem. zh., 39:6 (1998), 1357–1367 | MR | Zbl

[12] Liu X., Tadmor E., “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79 (1998), 397–425 | DOI | MR | Zbl

[13] Boris J.P., Book D.L., Hain K., “Flux-corrected transport. II. Generalizations of the method”, J. Comput. Phys., 18:3 (1975), 248–283 | DOI | MR | Zbl

[14] Kolgan V.P., “Primenenie operatorov sglazhivaniya v raznostnykh skhemakh vysokogo poryadka tochnosti”, Zh. vychisl. matem. i matem. fiz., 18:5 (1978), 1340–1345 | MR | Zbl

[15] Leer B., “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | MR

[16] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[17] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl