Approximate computation of eigenvalues and eigenfunctions of Sturm–Liouville differential operators by applying the theory of regularized traces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 409-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper overviews studies dealing with the approximate computation of eigenvalues and eigenfunctions of Sturm–Liouville differential operators by applying methods of the theory of regularized traces. Dorodnicyn’s method and its development in the form of the theory of regularized traces of differential operators are described.
@article{ZVMMF_2012_52_3_a4,
     author = {M. K. Kerimov},
     title = {Approximate computation of eigenvalues and eigenfunctions of {Sturm{\textendash}Liouville} differential operators by applying the theory of regularized traces},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {409--446},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a4/}
}
TY  - JOUR
AU  - M. K. Kerimov
TI  - Approximate computation of eigenvalues and eigenfunctions of Sturm–Liouville differential operators by applying the theory of regularized traces
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 409
EP  - 446
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a4/
LA  - ru
ID  - ZVMMF_2012_52_3_a4
ER  - 
%0 Journal Article
%A M. K. Kerimov
%T Approximate computation of eigenvalues and eigenfunctions of Sturm–Liouville differential operators by applying the theory of regularized traces
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 409-446
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a4/
%G ru
%F ZVMMF_2012_52_3_a4
M. K. Kerimov. Approximate computation of eigenvalues and eigenfunctions of Sturm–Liouville differential operators by applying the theory of regularized traces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 409-446. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a4/

[1] Dorodnitsyn A.A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh operatorov”, Uspekhi matem. nauk, 7:6 (1952), 3–96 | MR

[2] Kerimov M.K., “O nekotorykh spetsialnykh funktsiyakh, voznikayuschikh pri reshenii asimptoticheskimi metodami obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 36:11 (1996), 80–102 | MR | Zbl

[3] Kerimov M.K., “Funktsiya Releya – teoriya i metody vychisleniya”, Zh. vychisl. matem. i matem. fiz., 39:12 (1999), 1962–2006 | MR | Zbl

[4] Kerimov M.K., “Overview of some new results concerning the theory and applications of the Rayleigh special function”, Comput. Math. and Math. Phys., 48:9 (2008), 1454–1507 | DOI | MR

[5] Dikii L.A., “Formuly sledov dlya differentsialnykh operatorov Shturma–Liuvillya”, Uspekhi matem. nauk, 13:3(81) (1958), 111–143 | MR

[6] Sadovnichii V.A., Podolskii V.E., “Sledy operatorov”, Uspekhi matem. nauk, 61:5(371) (2006), 89–156 | MR | Zbl

[7] Sadovnichii V.A., “Sledy obyknovennykh differentsialnykh operatorov”, Tr. 3-i Mezhdunar. konf. “Funktsionalnye prostranstva. Differentsialnye operatory. Obschaya topologiya. Problemy matematicheskogo obrazovaniya”, posvyaschennoi 85-letiyu chl.-korr. RAN, prof. L.D. Kudryavtseva (Moskva, 25–28 marta 2008), MFTI, Dolgoprudnyi, 2008, 34–46

[8] Sadovnichii V.A., Teoriya operatorov, Izd. 2-e, pererab., MGU, M., 1986 | MR

[9] Lidskii V.B., “Nesamosopryazhennye operatory, imeyuschie sled”, Dokl. AN SSSR, 25:3 (1956), 485–487 | MR

[10] Lidskii V.B., Sadovnichii V.A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Funkts. analiz. i ero prilozh., 1:2 (1965), 52–59 | MR

[11] Gelfand I.M., Levitan B.M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo uravneniya vtorogo poryadka”, Dokl. AN CCCP, 88:4 (1953), 593–596 | MR | Zbl

[12] Dikii L.A., “Ob odnoi formule Gelfanda–Levitana”, Uspekhi matem. nauk, 8:2(54) (1953), 119–123 | MR | Zbl

[13] Gelfand I.M., “O tozhdestvakh dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Uspekhi matem. nauk, 11:1 (1956), 191–198 | MR | Zbl

[14] Levitan B.M., “Vychislenie regulyarizovannogo sleda dlya operatora Shturma–Liuvillya”, Uspekhi matem. nauk, 19:1(115) (1964), 161–165 | MR

[15] Ince E.L., Ordinary differential equations, Dover, New York, 1956 ; Ains E.L., Obyknovennye differentsialnye uravneniya, ONTI Ukrainy, Kharkov, 1939; Факториал Пресс, М., 2005 | MR

[16] Lyubishkin V.A., “Regulyarizovannye sledy operatora Shturma–Liuvillya na poluosi v sluchae neogranichennogo ubyvayuschego potentsiala”, Differents. uravneniya, 18:2 (1982), 345–346 | MR | Zbl

[17] Lyubishkin V.A., “Vychislenie regulyarizovannogo sleda v sluchae predelnogo kruga Veilya”, Tr. seminara im. I.G. Petrovskogo, 6, 1981, 167–194 | MR | Zbl

[18] Dikii L.A., “Dzeta-funktsiya obyknovennogo differentsialnogo uravneniya na konechnom otrezke”, Izv. AN SSSR. Matematika, 19:4 (1955), 187–200 | MR | Zbl

[19] Levitan B.M., Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Gostekhteorizdat, M.–L., 1950

[20] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. I, Gostekhteorizdat, M.–L., 1951

[21] Sadovnichii V.A., “Dzeta-funktsiya i sobstvennye chisla differentsialnykh operatorov”, Differents. uravneniya, 10:7, 1276–1285 | Zbl

[22] Sadovnichii V.A., “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Matem. sb., 72(114):2 (1967), 293–317 | Zbl

[23] Sadovnichii V.A., Dubrovskii V.V., Maleko E.M., Popov A.Yu., “Korrektnost metoda Dorodnitsyna priblizhennogo vychisleniya sobstvennykh znachenii odnogo klassa kraevykh zadach”, Differents. uravneniya, 38:4 (2002), 471–476 | MR | Zbl

[24] Dikii L.A., “Novyi sposob priblizhennogo vychisleniya sobstvennykh chisel zadachi Shturma–Liuvillya”, Dokl. AN SSSR, 116:1 (1957), 12–14 | MR | Zbl

[25] Shkarin S.A., “O sposobe Gelfanda–Dikogo vychisleniya pervykh sobstvennykh chisel operatora Shturma–Liuvillya”, Izv. MGU. Matematika, mekhanika, 1996, no. 1, 39–44 | MR

[26] Sadovnichii V.A., Podolskii V.E., “Ob odnom klasse operatorov Shturma–Liuvillya i priblizhennom vychislenii pervykh sobstvennykh znachenii”, Matem. sb., 189:1 (1998), 133–148 | DOI | MR | Zbl

[27] Sadovnichii V.A., Podolskii V.E., “O edinstvennosti resheniya sistemy regulyarizovannykh sledov”, Dokl. PAH, 402:4 (2005), 455–456 | MR

[28] Sadovnichii V.A., Dubrovskii V.V., “Zamechanie o novom metode vychisleniya sobstvennykh znachenii i sobstvennykh funktsii diskretnogo operatora”, Tr. seminara im. I.G. Petrovskogo, 1994, no. 17, 244–248 | MR

[29] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1982

[30] Sadovnichii V.A., Dubrovskii V.V., Maleko E.M., “Ob odnom sposobe priblizhennogo nakhozhdeniya sobstvennykh chisel operatora Shturma–Liuvillya”, Dokl. RAN, 369:1 (1999), 16–18 | MR | Zbl

[31] Dubrovskii V.V., “Obosnovanie metoda vychisleniya sobstvennykh chisel integralnykh operatorov s pomoschyu teorii sledov”, Differents. uravneniya, 31:10 (1995), 1762–1763 | MR | Zbl

[32] Kurosh A.G., Kurs vysshei algebry, Nauka, M., 1983 | Zbl

[33] Maleko E.M., “Priblizhennoe vychislenie sobstvennykh chisel diskretnogo operatora s pomoschyu spektralnykh sledov stepenei ego rezolvent”, Izv. Saratovskogo un-ta. Novaya seriya. Matematika, mekhanika, informatika, 10:1 (2010), 18–23

[34] Maleko E.M., “O vychislenii spektra napravlenno-vozmuschennykh operatorov”, Zh. vychisl. matem. i matem. fiz., 50:7 (2010), 1179–1199 | MR | Zbl

[35] Maleko E.M., K vychisleniyu spektra diskretnykh i napravlenno-vozmuschennykh operatorov, izd-vo Magnitogorskogo gos. tekhn. un-ta, Magnitogorsk, 2007

[36] Kadchenko S.I., Kinzina I.I., “Vychislenie sobstvennykh znachenii vozmuschennykh diskretnykh poluogranichennykh operatorov”, Zh. vychisl. matem. i matem. fiz., 46:7 (2006), 1265–1272 | MR