Numerical methods for Hamilton Jacobi functional differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 388-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Initial and initial boundary value problems for first order partial functional differential equations are considered. Explicit difference schemes of the Euler type and implicit difference methods are investigated. The following theoretical aspects of the methods are presented. Sufficient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that assumptions on the regularity of given functions are the same for both the methods. It is shown that conditions on the mesh for explicit difference schemes are more restrictive than suitable assumptions for implicit methods. There are implicit difference schemes which are convergent and corresponding explicit difference methods are not convergent. Error estimates for both the methods are construted.
@article{ZVMMF_2012_52_3_a3,
     author = {W. Czernous and Z. Kamont},
     title = {Numerical methods for {Hamilton} {Jacobi} functional differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {388--408},
     year = {2012},
     volume = {52},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/}
}
TY  - JOUR
AU  - W. Czernous
AU  - Z. Kamont
TI  - Numerical methods for Hamilton Jacobi functional differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 388
EP  - 408
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/
LA  - en
ID  - ZVMMF_2012_52_3_a3
ER  - 
%0 Journal Article
%A W. Czernous
%A Z. Kamont
%T Numerical methods for Hamilton Jacobi functional differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 388-408
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/
%G en
%F ZVMMF_2012_52_3_a3
W. Czernous; Z. Kamont. Numerical methods for Hamilton Jacobi functional differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 388-408. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/

[1] Brandi P., Kamont Z., Salvadori A., “Approximate solutions of mixed problems for first order partial differential-functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 277–302 | MR | Zbl

[2] Brunner H., “The numerical treatment of ordinary and partial Volterra integrodifferential equation”, Proc. First Intern. Colloq. Numer. Anal. (Plovdiv, 1992), ed. D. Bainov, VSP, Utrecht, 1993, 13–26 | MR | Zbl

[3] Czernous W., “Generalized solutions of mixed problems for first order partial functional differential equations”, Ukrain. Mat. Zh., 58 (2006), 803–828 | DOI | MR

[4] Cinquini S., “Sopra di sistemi iperbolici di equazioni a derivate parziali (nonlineari) in piu variabili indipendenti”, Ann. Mat. pura ed appl., 120 (1979), 201–214 | DOI | MR | Zbl

[5] Cinquini Cibrario M., “Sopra una classe di sistemi di equazioni non lineari a derivate parziali in piu variabili indipendenti”, Ann. Mat. pura ed appl., 140 (1985), 223–253 | DOI | MR | Zbl

[6] Czernous W., “Generalized implicit Euler method for hyperbolic functional differential equations”, Math. Nachr., 283 (2010), 1114–1133 | DOI | MR | Zbl

[7] Czernous W., Kamont Z., “Implicit difference methods for parabolic functional differential equations”, ZAMM Z. Angew. Math. Mech., 85:5 (2005), 326–338 | DOI | MR | Zbl

[8] Godlewski E., Raviat P.A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, Berlin, 1996 | MR | Zbl

[9] Gottlieb D., Tadmor E., “The CFL condition for spectral approximations to hyperbolic initial-boundary value problems”, Math. of Comput., 56 (1991), 565–588 | DOI | MR | Zbl

[10] Kamont Z., Hyperbolic Functional Differential Inequalities, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[11] Kamont Z., “Implicit difference schemes for evolution functional differential equations”, Zeit. Anal. Anwend., 30 (2011), 105–128 | DOI | MR | Zbl

[12] Kępczyńska A., “Implicit difference methods for quasilinear differential functional equations on the Haar pyramid”, Z. Anal. Anwend., 27 (2008), 213–231 | DOI | MR | Zbl

[13] Kropielnicka K., “Difference methods for parabolic functional differential problems of the Neumann type”, Ann. Polon. Math., 92 (2007), 163–178 | DOI | MR | Zbl

[14] Lu X., “Combined iterative methods for numerical solutions of parabolic problems with time delays”, Appl. Math. Comput., 89 (1998), 213–224 | MR | Zbl

[15] Pao C.V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, J. Math. Anal. Appl., 240 (1999), 249–270 | DOI | MR

[16] Pao C.V., “Finite difference solutions of reaction diffusion equations with continuous time delays”, Comput. Math. Appl., 42 (2001), 399–412 | DOI | MR | Zbl

[17] Pao C.V., “Finite difference reaction–diffusion systems with coupled boundary condition and time delays”, J. Math. Anal. Appl., 272 (2002), 407–434 | DOI | MR | Zbl

[18] Puźniakowska-Galuch E., “Implicit difference methods for nonlinear first order partial functional differential systems”, Appl. Math. (Warsaw), 37 (2010), 459–482 | DOI | MR | Zbl

[19] Sapa L., “A finite difference method for quasilinear and nonlinear differential functional equations with Dirichlet's condition”, Ann. Polon. Math., 93 (2008), 113–133 | DOI | MR | Zbl

[20] Samarskii A.A., The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001 | MR | Zbl

[21] Samarskii A.A., Matus P.P., Vabishchevich P.N., Difference Schemes with Operator Factors and its Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[22] Yuan-Ming Wang, Pao C., “Time delayed finite difference reaction–diffusion systems with nonquasi-monotone functional”, Numer. Math., 103 (2006), 485–513 | DOI | MR | Zbl

[23] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer, Berlin, 1996 | MR