@article{ZVMMF_2012_52_3_a3,
author = {W. Czernous and Z. Kamont},
title = {Numerical methods for {Hamilton} {Jacobi} functional differential equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {388--408},
year = {2012},
volume = {52},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/}
}
TY - JOUR AU - W. Czernous AU - Z. Kamont TI - Numerical methods for Hamilton Jacobi functional differential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 388 EP - 408 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/ LA - en ID - ZVMMF_2012_52_3_a3 ER -
W. Czernous; Z. Kamont. Numerical methods for Hamilton Jacobi functional differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 388-408. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a3/
[1] Brandi P., Kamont Z., Salvadori A., “Approximate solutions of mixed problems for first order partial differential-functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 277–302 | MR | Zbl
[2] Brunner H., “The numerical treatment of ordinary and partial Volterra integrodifferential equation”, Proc. First Intern. Colloq. Numer. Anal. (Plovdiv, 1992), ed. D. Bainov, VSP, Utrecht, 1993, 13–26 | MR | Zbl
[3] Czernous W., “Generalized solutions of mixed problems for first order partial functional differential equations”, Ukrain. Mat. Zh., 58 (2006), 803–828 | DOI | MR
[4] Cinquini S., “Sopra di sistemi iperbolici di equazioni a derivate parziali (nonlineari) in piu variabili indipendenti”, Ann. Mat. pura ed appl., 120 (1979), 201–214 | DOI | MR | Zbl
[5] Cinquini Cibrario M., “Sopra una classe di sistemi di equazioni non lineari a derivate parziali in piu variabili indipendenti”, Ann. Mat. pura ed appl., 140 (1985), 223–253 | DOI | MR | Zbl
[6] Czernous W., “Generalized implicit Euler method for hyperbolic functional differential equations”, Math. Nachr., 283 (2010), 1114–1133 | DOI | MR | Zbl
[7] Czernous W., Kamont Z., “Implicit difference methods for parabolic functional differential equations”, ZAMM Z. Angew. Math. Mech., 85:5 (2005), 326–338 | DOI | MR | Zbl
[8] Godlewski E., Raviat P.A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, Berlin, 1996 | MR | Zbl
[9] Gottlieb D., Tadmor E., “The CFL condition for spectral approximations to hyperbolic initial-boundary value problems”, Math. of Comput., 56 (1991), 565–588 | DOI | MR | Zbl
[10] Kamont Z., Hyperbolic Functional Differential Inequalities, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl
[11] Kamont Z., “Implicit difference schemes for evolution functional differential equations”, Zeit. Anal. Anwend., 30 (2011), 105–128 | DOI | MR | Zbl
[12] Kępczyńska A., “Implicit difference methods for quasilinear differential functional equations on the Haar pyramid”, Z. Anal. Anwend., 27 (2008), 213–231 | DOI | MR | Zbl
[13] Kropielnicka K., “Difference methods for parabolic functional differential problems of the Neumann type”, Ann. Polon. Math., 92 (2007), 163–178 | DOI | MR | Zbl
[14] Lu X., “Combined iterative methods for numerical solutions of parabolic problems with time delays”, Appl. Math. Comput., 89 (1998), 213–224 | MR | Zbl
[15] Pao C.V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, J. Math. Anal. Appl., 240 (1999), 249–270 | DOI | MR
[16] Pao C.V., “Finite difference solutions of reaction diffusion equations with continuous time delays”, Comput. Math. Appl., 42 (2001), 399–412 | DOI | MR | Zbl
[17] Pao C.V., “Finite difference reaction–diffusion systems with coupled boundary condition and time delays”, J. Math. Anal. Appl., 272 (2002), 407–434 | DOI | MR | Zbl
[18] Puźniakowska-Galuch E., “Implicit difference methods for nonlinear first order partial functional differential systems”, Appl. Math. (Warsaw), 37 (2010), 459–482 | DOI | MR | Zbl
[19] Sapa L., “A finite difference method for quasilinear and nonlinear differential functional equations with Dirichlet's condition”, Ann. Polon. Math., 93 (2008), 113–133 | DOI | MR | Zbl
[20] Samarskii A.A., The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001 | MR | Zbl
[21] Samarskii A.A., Matus P.P., Vabishchevich P.N., Difference Schemes with Operator Factors and its Applications, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[22] Yuan-Ming Wang, Pao C., “Time delayed finite difference reaction–diffusion systems with nonquasi-monotone functional”, Numer. Math., 103 (2006), 485–513 | DOI | MR | Zbl
[23] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer, Berlin, 1996 | MR