Numerical solution of the Cauchy problem for the Painlevé; I and II equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 379-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method for solving the Cauchy problem for the first and second Painlevé; differential equations is proposed. The presence of movable poles of the solution is allowed. The positions of the poles are not a priori known and are determined in the process of solving the equation. The proposed method is based on the transition to an auxiliary system of differential equations in a neighborhood of a pole. The equations in this system and its solution have no singularities in either the pole or its neighborhood. Numerical results confirming the efficiency of this method are presented.
@article{ZVMMF_2012_52_3_a2,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {Numerical solution of the {Cauchy} problem for the {Painlev\'e;} {I} and {II} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {379--387},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - Numerical solution of the Cauchy problem for the Painlevé; I and II equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 379
EP  - 387
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/
LA  - ru
ID  - ZVMMF_2012_52_3_a2
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T Numerical solution of the Cauchy problem for the Painlevé; I and II equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 379-387
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/
%G ru
%F ZVMMF_2012_52_3_a2
A. A. Abramov; L. F. Yukhno. Numerical solution of the Cauchy problem for the Painlevé; I and II equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/

[1] Its A.R., Kapaev A.A., Novokshenov V.Yu., Fokas A.S., Transtsendenty Penleve. Metod zadachi Rimana, In-t kompyuternykh issledovanii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 728 pp.

[2] Erugin N.P., “Teoriya podvizhnykh osobykh tochek dlya uravnenii vtorogo poryadka I”, Differents. ur-niya, 12:3 (1976), 387–416 | MR | Zbl

[3] Erugin N.P. Teoriya podvizhnykh osobykh tochek dlya uravnenii vtorogo poryadka II, Differents. ur-niya, 12:4 (1976), 579–598 | MR | Zbl

[4] Lukashevich N.A., Orlov V.N., “Issledovanie priblizhennogo resheniya vtorogo uravneniya Penleve”, Differents. ur-niya, 25:10 (1989), 1829–1832 | MR | Zbl