Numerical solution of the Cauchy problem for the Painlevé; I and II equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 379-387
Cet article a éte moissonné depuis la source Math-Net.Ru
A numerical method for solving the Cauchy problem for the first and second Painlevé; differential equations is proposed. The presence of movable poles of the solution is allowed. The positions of the poles are not a priori known and are determined in the process of solving the equation. The proposed method is based on the transition to an auxiliary system of differential equations in a neighborhood of a pole. The equations in this system and its solution have no singularities in either the pole or its neighborhood. Numerical results confirming the efficiency of this method are presented.
@article{ZVMMF_2012_52_3_a2,
author = {A. A. Abramov and L. F. Yukhno},
title = {Numerical solution of the {Cauchy} problem for the {Painlev\'e;} {I} and {II} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {379--387},
year = {2012},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/}
}
TY - JOUR AU - A. A. Abramov AU - L. F. Yukhno TI - Numerical solution of the Cauchy problem for the Painlevé; I and II equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 379 EP - 387 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/ LA - ru ID - ZVMMF_2012_52_3_a2 ER -
%0 Journal Article %A A. A. Abramov %A L. F. Yukhno %T Numerical solution of the Cauchy problem for the Painlevé; I and II equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 379-387 %V 52 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/ %G ru %F ZVMMF_2012_52_3_a2
A. A. Abramov; L. F. Yukhno. Numerical solution of the Cauchy problem for the Painlevé; I and II equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a2/
[1] Its A.R., Kapaev A.A., Novokshenov V.Yu., Fokas A.S., Transtsendenty Penleve. Metod zadachi Rimana, In-t kompyuternykh issledovanii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2005, 728 pp.
[2] Erugin N.P., “Teoriya podvizhnykh osobykh tochek dlya uravnenii vtorogo poryadka I”, Differents. ur-niya, 12:3 (1976), 387–416 | MR | Zbl
[3] Erugin N.P. Teoriya podvizhnykh osobykh tochek dlya uravnenii vtorogo poryadka II, Differents. ur-niya, 12:4 (1976), 579–598 | MR | Zbl
[4] Lukashevich N.A., Orlov V.N., “Issledovanie priblizhennogo resheniya vtorogo uravneniya Penleve”, Differents. ur-niya, 25:10 (1989), 1829–1832 | MR | Zbl