Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 564-576 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nedelec vector finite elements are used for the numerical solution of a regularized version of the quasi-stationary Maxwell equations written in terms of a scalar and a vector magnetic potential with special calibration taking into account the conductivity of the medium. An optimal energy estimate for the error of the approximate solution in Lipschitz polyhedral domains is established. Numerical results are presented that demonstrate the stability of the method.
@article{ZVMMF_2012_52_3_a13,
     author = {M. I. Ivanov and I. A. Kremer and M. V. Urev},
     title = {Regularization method for solving the quasi-stationary {Maxwell} equations in an~inhomogeneous conducting medium},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {564--576},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/}
}
TY  - JOUR
AU  - M. I. Ivanov
AU  - I. A. Kremer
AU  - M. V. Urev
TI  - Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 564
EP  - 576
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/
LA  - ru
ID  - ZVMMF_2012_52_3_a13
ER  - 
%0 Journal Article
%A M. I. Ivanov
%A I. A. Kremer
%A M. V. Urev
%T Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 564-576
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/
%G ru
%F ZVMMF_2012_52_3_a13
M. I. Ivanov; I. A. Kremer; M. V. Urev. Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 564-576. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/

[1] Kalinin A.V., Kalinkina A.A., “Kvazistatsionarnye nachalno-kraevye zadachi dlya sistemy uravnenii Maksvella”, Vestn. NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2003, no. 26, 21–39

[2] Gudovich I.S., Krein S.G., Kulikov I.M., “Kraevye zadachi dlya uravnenii Maksvella”, Dokl. AN SSSR, 207:2 (1972), 321–324 | MR | Zbl

[3] Ivanov M.I., Kateshov V.A., Kremer I.A., Urev M.V., “Reshenie trekhmernykh nestatsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 33–44 | Zbl

[4] Kremer I.A., Urev M.V., “Metod regulyarizatsii statsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sibirsk. zh. vychisl. matem., 12:2 (2009), 161–170 | Zbl

[5] Kremer I.A., Urev M.V., “Reshenie metodom konechnykh elementov regulyarizirovannoi zadachi dlya statsionarnogo magnitnogo polya v neodnorodnoi provodyaschei srede”, Sibirsk. zh. vychisl. matem., 13:1 (2010), 33–49 | Zbl

[6] Kremer I.A., Urev M.V., “Metod regulyarizatsii dlya kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Vestn. NGU. Matem. mekhan. informatika, 11:1 (2011), 35–44

[7] Smagin V.V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolson dlya parabolicheskikh uravnenii”, Sibirsk. matem. zh., 42:3 (2001), 670–682 | MR | Zbl

[8] Girault V., Raviart P.-A., Finite element methods for Navier–Stokes equations, Springer-Verlag, Berlin, 1986 | MR | Zbl

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[10] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[11] Monk P., Finite element methods for Maxwell's equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003 | MR | Zbl

[12] Nedelec J.C., “A new family of mixed finite elements in $\mathbb R^3$”, Numer. Math., 50:1 (1986), 57–81 | DOI | MR | Zbl

[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[14] Amrouche C., Bernardi C., Dauge M., Girault V., “Vector potentials in three-dimensional nonsmooth domains”, Math. Meth. Appl. Sci., 21 (1998), 823–864 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Chen Z., Du Q., Zou J., “Finite element methods with matching and non-matching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Analys., 37 (2000), 1542–1570 | DOI | MR | Zbl

[16] Alonso A., Valli A., “An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations”, Math. Comput., 68:226 (1999), 607–631 | DOI | MR | Zbl

[17] Urev M. V., “Skhodimost diskretnoi skhemy v metode regulyarizatsii kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sibirsk. zh. vychisl. matem., 14:3 (2011), 319–332

[18] Ciarlet P., Zou J., “Fully discrete finite element approaches for time-dependent Maxwell's equations”, Numer. Math., 82 (1999), 193–219 | DOI | MR | Zbl

[19] Ivanov M.I., Kateshov V.A., Kremer I.A., Epov M.I., “Programmnoe obespechenie MODEM 3D dlya interpretatsii dannykh nestatsionarnykh zondirovanii s uchetom effektov vyzvannoi polyarizatsii”, Zap. Gornogo in-ta, 183 (2009), 242–245

[20] Epov M.I., Antonov E.Yu., “Pryamye zadachi elektromagnitnykh zondirovanii s uchetom dispersii geoelektricheskikh parametrov”, Fizika Zemli, 1999, no. 3-4, A48–A55