Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 564-576
Voir la notice de l'article provenant de la source Math-Net.Ru
Nedelec vector finite elements are used for the numerical solution of a regularized version of the quasi-stationary Maxwell equations written in terms of a scalar and a vector magnetic potential with special calibration taking into account the conductivity of the medium. An optimal energy estimate for the error of the approximate solution in Lipschitz polyhedral domains is established. Numerical results are presented that demonstrate the stability of the method.
@article{ZVMMF_2012_52_3_a13,
author = {M. I. Ivanov and I. A. Kremer and M. V. Urev},
title = {Regularization method for solving the quasi-stationary {Maxwell} equations in an~inhomogeneous conducting medium},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {564--576},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/}
}
TY - JOUR AU - M. I. Ivanov AU - I. A. Kremer AU - M. V. Urev TI - Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 564 EP - 576 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/ LA - ru ID - ZVMMF_2012_52_3_a13 ER -
%0 Journal Article %A M. I. Ivanov %A I. A. Kremer %A M. V. Urev %T Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 564-576 %V 52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/ %G ru %F ZVMMF_2012_52_3_a13
M. I. Ivanov; I. A. Kremer; M. V. Urev. Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 564-576. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a13/