@article{ZVMMF_2012_52_3_a10,
author = {S. A. Nazarov},
title = {Enforced stability of an eigenvalue in the continuous spectrum of a~waveguide with an~obstacle},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {521--538},
year = {2012},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/}
}
TY - JOUR AU - S. A. Nazarov TI - Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 521 EP - 538 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/ LA - ru ID - ZVMMF_2012_52_3_a10 ER -
%0 Journal Article %A S. A. Nazarov %T Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 521-538 %V 52 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/ %G ru %F ZVMMF_2012_52_3_a10
S. A. Nazarov. Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 521-538. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/
[1] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974 | Zbl
[2] Rabotnov Yu.N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl
[3] Kuznetsov N., Maz'ya V., Vainberq V., Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR
[4] Evans D.V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[5] Nazarov S.A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zhurnal, 51:5 (2010), 1086–1101 | MR | Zbl
[6] Aslanyan A., Parnovski L., Vassiliev D. Complex resonances in acoustic waveguides, Q. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl
[7] Nazarov S.A., Plamenevskii B.A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR
[8] Kamotskii I.V., Nazarov S.A., “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zapiski nauchn. seminarov peterburg. otd. matem. in-ta RAN, 264 (2000), 66–82 | MR | Zbl
[9] Nazarov S.A., “Asimptotika sobstvennogo chisla volnovoda s tonkim ekraniruyuschim prepyatstviem i anomalii Vuda”, Zapiski nauchn. seminarov peterburg. otd. matem. in-ta RAN, 385, 2010, 98–134 | MR
[10] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Second edition, Springer, Berlin, 1983 | MR | Zbl
[11] Wilcox S.N., Scattering theory for diffraction gratings, Springer, Berlin, 1984 | MR
[12] Nazarov S.A., Plamenevskii B.A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[13] Nazarov S.A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | MR | Zbl
[14] Nazarov S.A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR
[15] Nazarov S.A., Plamenevskii B.A., “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiz., 1991, no. 13, 192–244, Izd-vo LGU, L. | MR
[16] Van Daik M.D., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967 | Zbl
[17] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[18] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[19] Kondratev V.A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. obschestva, 16 (1967), 209–292
[20] Mazya V.G., Plamenevskii V.A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl
[21] Mazya V.G., Plamenevskii B.A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR
[22] Nazarov S.A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[23] Nazarov S.A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, Internat. Math. Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR
[24] Lione Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[25] Birman M.Sh., Solomyak M.Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[26] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl