Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 521-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Perturbations of an eigenvalue in the continuous spectrum of the Neumann problem for the Laplacian in a strip waveguide with an obstacle symmetric about the midline are studied. Such an eigenvalue is known to be unstable, and an arbitrarily small perturbation can cause it to leave the spectrum to become a complex resonance point. Conditions on the perturbation of the obstacle boundary are found under which the eigenvalue persists in the continuous spectrum. The result is obtained via the asymptotic analysis of an auxiliary object, namely, an augmented scattering matrix.
@article{ZVMMF_2012_52_3_a10,
     author = {S. A. Nazarov},
     title = {Enforced stability of an eigenvalue in the continuous spectrum of a~waveguide with an~obstacle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {521--538},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 521
EP  - 538
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/
LA  - ru
ID  - ZVMMF_2012_52_3_a10
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 521-538
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/
%G ru
%F ZVMMF_2012_52_3_a10
S. A. Nazarov. Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 521-538. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a10/

[1] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974 | Zbl

[2] Rabotnov Yu.N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[3] Kuznetsov N., Maz'ya V., Vainberq V., Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR

[4] Evans D.V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[5] Nazarov S.A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zhurnal, 51:5 (2010), 1086–1101 | MR | Zbl

[6] Aslanyan A., Parnovski L., Vassiliev D. Complex resonances in acoustic waveguides, Q. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[7] Nazarov S.A., Plamenevskii B.A., “Samosopryazhennye ellipticheskie zadachi: operatory rasseyaniya i polyarizatsii na rebrakh granitsy”, Algebra i analiz, 6:4 (1994), 157–186 | MR

[8] Kamotskii I.V., Nazarov S.A., “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zapiski nauchn. seminarov peterburg. otd. matem. in-ta RAN, 264 (2000), 66–82 | MR | Zbl

[9] Nazarov S.A., “Asimptotika sobstvennogo chisla volnovoda s tonkim ekraniruyuschim prepyatstviem i anomalii Vuda”, Zapiski nauchn. seminarov peterburg. otd. matem. in-ta RAN, 385, 2010, 98–134 | MR

[10] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Second edition, Springer, Berlin, 1983 | MR | Zbl

[11] Wilcox S.N., Scattering theory for diffraction gratings, Springer, Berlin, 1984 | MR

[12] Nazarov S.A., Plamenevskii B.A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[13] Nazarov S.A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | MR | Zbl

[14] Nazarov S.A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR

[15] Nazarov S.A., Plamenevskii B.A., “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Problemy matem. fiz., 1991, no. 13, 192–244, Izd-vo LGU, L. | MR

[16] Van Daik M.D., Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967 | Zbl

[17] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[18] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[19] Kondratev V.A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. obschestva, 16 (1967), 209–292

[20] Mazya V.G., Plamenevskii V.A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[21] Mazya V.G., Plamenevskii B.A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[22] Nazarov S.A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[23] Nazarov S.A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, Internat. Math. Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR

[24] Lione Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[25] Birman M.Sh., Solomyak M.Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[26] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl