@article{ZVMMF_2012_52_3_a1,
author = {D. S. Anikonov and V. G. Nazarov},
title = {Problem of two-beam tomography},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {372--378},
year = {2012},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a1/}
}
D. S. Anikonov; V. G. Nazarov. Problem of two-beam tomography. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 372-378. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a1/
[1] Anikonov D.S., Nazarov V.G., Prokhorov I.V., “Algorithm of finding a body projection within an absorbing and scattering medium”, Inverse and III-Posed Problems, 18 (2011), 885–893 | MR
[2] Anikonov D.S., Nazarov V.G., Prokhorov I.V., “Zadacha odnorakursnogo zondirovaniya neizvestnoi sredy”, Sibirsk. industr. matem., 14:2(46) (2011), 21–27
[3] Vladimirov B.C., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 1961, no. 61, 3–158
[4] Germogenova T.A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1976
[5] Anikonov D.S., Kovtanyuk A.E., Prokhorov I.V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000, 223 pp.
[6] Hubbell J.H., Seltzer S.M., Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 Kev to 20 Mev for elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR 5632, 1995
[7] Dubrovin V.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979