Problem of two-beam tomography
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 372-378 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An idea was developed suggested in a number of studies dealing with the search for inhomogeneous inclusions inside an unknown medium given the radiation measured in a plane outside the desired body. Specifically, the medium was proposed to be probed in two directions (at two angles) in contrast to previous works, where a single direction was used. Accordingly, the probing results became more informative: the determination of the object’s shadow on the measurement area (antenna) was supplemented with the possibility of localizing the desired body in space. A tomographic location algorithm was proposed that can underlie a new orientation method in arbitrary absorbing and scattering media. As before, the case was considered where direct visualization (photograph) fails to produce a distinguishable structure of the medium. The problem was solved by analyzing signals passing through the medium. A number of numerical experiments were performed by applying computer simulation. The numerical results were illustrated by plots and tomograms.
@article{ZVMMF_2012_52_3_a1,
     author = {D. S. Anikonov and V. G. Nazarov},
     title = {Problem of two-beam tomography},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {372--378},
     year = {2012},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a1/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - V. G. Nazarov
TI  - Problem of two-beam tomography
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 372
EP  - 378
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a1/
LA  - ru
ID  - ZVMMF_2012_52_3_a1
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A V. G. Nazarov
%T Problem of two-beam tomography
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 372-378
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a1/
%G ru
%F ZVMMF_2012_52_3_a1
D. S. Anikonov; V. G. Nazarov. Problem of two-beam tomography. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 3, pp. 372-378. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_3_a1/

[1] Anikonov D.S., Nazarov V.G., Prokhorov I.V., “Algorithm of finding a body projection within an absorbing and scattering medium”, Inverse and III-Posed Problems, 18 (2011), 885–893 | MR

[2] Anikonov D.S., Nazarov V.G., Prokhorov I.V., “Zadacha odnorakursnogo zondirovaniya neizvestnoi sredy”, Sibirsk. industr. matem., 14:2(46) (2011), 21–27

[3] Vladimirov B.C., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 1961, no. 61, 3–158

[4] Germogenova T.A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1976

[5] Anikonov D.S., Kovtanyuk A.E., Prokhorov I.V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000, 223 pp.

[6] Hubbell J.H., Seltzer S.M., Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 Kev to 20 Mev for elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR 5632, 1995

[7] Dubrovin V.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979