Two approaches to the solution of coefficient inverse problems for wave equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 263-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two approaches to solving coefficient inverse problems for wave equations are compared. One approach is based on integral representations obtained with the help of the Green’s function for the wave equation. In the other approach, the gradient of the error functional is directly computed in terms of the solution of the adjoint problem for a partial differential equation. The methods developed are intended for finding inhomogeneities in homogeneous media and can be applied in medicine diagnostics, acoustic and seismic near surface exploration, engineering seismics, etc.
@article{ZVMMF_2012_52_2_a9,
     author = {A. V. Goncharskii and S. Yu. Romanov},
     title = {Two approaches to the solution of coefficient inverse problems for wave equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {263--269},
     year = {2012},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a9/}
}
TY  - JOUR
AU  - A. V. Goncharskii
AU  - S. Yu. Romanov
TI  - Two approaches to the solution of coefficient inverse problems for wave equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 263
EP  - 269
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a9/
LA  - ru
ID  - ZVMMF_2012_52_2_a9
ER  - 
%0 Journal Article
%A A. V. Goncharskii
%A S. Yu. Romanov
%T Two approaches to the solution of coefficient inverse problems for wave equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 263-269
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a9/
%G ru
%F ZVMMF_2012_52_2_a9
A. V. Goncharskii; S. Yu. Romanov. Two approaches to the solution of coefficient inverse problems for wave equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 263-269. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a9/

[1] Hounsfield G.N., “Computed Medical Imaging”, Nobel Lect., Physiology or Medicine 1971–1980, World Scient. Publ. Co., Singapore, 1992, 568–586

[2] Glinskii B.M., Sobisevich A.L., Khairetdinov M.S., “Opyt vibroseismicheskogo zondirovaniya slozhno postroennykh geologicheskikh struktur (na primere gryazevogo vulkana Shugo)”, Dokl. RAN, 413:3 (2007), 398

[3] Kuchunova E.V., Sadovskii V.M., “Chislennoe issledovanie rasprostraneniya seismicheskikh voln v blochnykh sredakh na mnogoprotsessornykh vychislitelnykh sistemakh”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 9:1 (2008), 66–76

[4] Lavrentev M.M., “Ob odnom klasse obratnykh zadach dlya differentsialnykh uravnenii”, Dokl. AN SSSR, 160:1 (1965), 32–35 | MR | Zbl

[5] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[6] Chavent G., “Deux resultats sur le probléme inverse dans les équations aux derivées partielles du deuxieme ordre an t et sur l'unicité de la solution du probléme inverse de la diffusion”, C.r. Acad. Sci. Paris, 270 (1970), 25–28 | MR | Zbl

[7] Ramm A.G., Multidimensional inverse scattering problems, Longman Group, London, 1992 | MR | Zbl

[8] Romanov V.G., Kabanikhin S.I., Inverse problems for maxwell's equations, VSP, Utrecht, 1994 | MR | Zbl

[9] Kabanikhin S.I., Satybaev A.D., Shishlenin M.A., Direct methods of solving inverse hyperbole problems, VSP, Utrecht, 2004

[10] Kokurin M.Yu., “O reduktsii nelineinoi obratnoi zadachi dlya giperbolicheskogo uravneniya na ploskosti k lineinomu integralnomu uravneniyu”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 10:1 (2009), 300–305 | Zbl

[11] Beilina L., Klibanov M.V., “A globally convergent numerical method for a coefficient inverse problems”, SIAM J. Sci. Comput., 31 (2008), 478–509 | DOI | MR | Zbl

[12] Beilina L., Klibanov M.V., Kokurin M.Yu., Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, Chalmers Preprint Series. Preprint 2009:47, Univ. Gothenburg, Gothenburg, 2009 | MR

[13] Bakushinsky A.B., Goncharsky A.V., Ill-posed problems. Theory and applications, Kluwer Acad. Publs., Dordrecht, 1994 | MR

[14] Goncharskii A.V., Romanov S.Yu., “On a three-dimensional diagnostics problem in the wave approximation”, Comput. Math. and Math. Phys., 40:9 (2000), 1308–1311 | MR | Zbl

[15] Goncharskii A.V., Ovchinnikov S.L., Romanov S.Yu., “Ob odnoi zadache volnovoi diagnostiki”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2010, no. 1, 7–13 | MR

[16] Goncharskii A.V., Romanov S.Yu., “Ob odnoi zadache kompyuternoi tomografii v volnovom priblizhenii”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 7:1 (2006), 36–40

[17] Goncharskii A.V., Romanov S.Yu., Kharchenko S.A., “Obratnaya zadacha akusticheskoi diagnostiki trekhmernykh sred”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 7:1 (2006), 113–121 | MR

[18] Ovchinnikov S.L., Romanov S.Yu., “Organizatsiya parallelnykh vychislenii pri reshenii obratnoi zadachi volnovoi diagnostiki”, Vychisl. metody i programmirovanie: novye vychisl. tekhnologii, 9:2 (2008), 338–345 | Zbl

[19] Tyrtyshnikov E.E., Metody chislennogo analiza, Akademiya, M., 2007

[20] Natterer F., Wubbeling F., “A propagation-backpropagation method for ultrasound tomography”, Inverse Problems, 11:6 (1995), 1225–1232 | DOI | MR | Zbl