@article{ZVMMF_2012_52_2_a8,
author = {P. N. Vabishchevich},
title = {Construction of splitting schemes based on transition operator approximation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {253--262},
year = {2012},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/}
}
TY - JOUR AU - P. N. Vabishchevich TI - Construction of splitting schemes based on transition operator approximation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 253 EP - 262 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/ LA - ru ID - ZVMMF_2012_52_2_a8 ER -
P. N. Vabishchevich. Construction of splitting schemes based on transition operator approximation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 253-262. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/
[1] Yanenko N.N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[2] Marchuk G.I., Metody rasschepleniya, Nauka, M., 1989
[3] Samarskii A.A., Matus P.P., Vabishchevich P.N., Difference schemes with operator factors, Kluwer Acad. Publs, Dordrecht, 2002 | MR | Zbl
[4] Samarskii A.A., Vabischevich P.N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999
[5] Peaceman D.W., Rachford Y.Y., “The numerical solution of parabolic and elliptic differential equations”, J. SIAM, 3 (1955), 28–41 | MR | Zbl
[6] Douglas J.J., Rachford Y.Y., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82 (1956), 421–439 | DOI | MR | Zbl
[7] Samarskii A.A., Teoriya raznostnykh skhem, Nauka, M., 1989
[8] Gordeziani D.G., Meladze G.V., “O modelirovanii tretei kraevoi zadachi dlya mnogomernykh parabolicheskikh uravnenii v proizvolnoi oblasti odnomernymi uravneniyami”, Zh. vychisl. matem. i matem. fiz., 14 (1974), 246–250 | MR | Zbl
[9] Abrashin V.N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki. 1”, Differents. ur-niya, 26 (1990), 214–323
[10] Abrashin V.N., Mukha V.A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. ur-niya, 28 (1992), 1986–1799
[11] Vabischevich P.N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 44–51 | MR | Zbl
[12] Samarskii A.A., Vabischevich P.N., Matus P.P., “Ustoichivost vektornykh additivnykh skhem”, Dokl. RAN, 361 (1998), 746–748 | MR | Zbl
[13] Abrashin V.N., Vabischevich P.N., “Vektornye additivnye skhemy dlya evolyutsionnykh uravnenii vtorogo poryadka”, Differents. ur-niya, 34:12 (1998), 1666–1674 | MR | Zbl
[14] Samarskii A.A., Vabischevich P.N., “Regulyarizovannye additivnye skhemy polnoi approksimatsii”, Dokl. RAN, 358 (1998), 461–464 | MR | Zbl
[15] Samarskii A.A., Gulin A.V., Ustoichivost raznostnykh skhem, Nauka, M., 1973
[16] Butcher J., Numerical methods for ordinary differential equations, Wiley, New York, 2008 | MR | Zbl
[17] Hairer E., Wanner G., Solving ordinary differential equations II: Stiff and differential–algebraic problems, Springer, Berlin, 2010 | MR
[18] Strang G., “On the construction and comparison of difference schemes”, SIAM J. Numer. Analys., 5:3 (1968), 506–517 | DOI | MR | Zbl
[19] Vabischevich P.N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR | Zbl
[20] Vabischevich P.N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach s kososimmetrichnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1121–1132 | MR | Zbl