Construction of splitting schemes based on transition operator approximation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 253-262
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability analysis of approximate solutions to unsteady problems for partial differential equations is usually based on the use of the canonical form of operator-difference schemes. Another possibility widely used in the analysis of methods for solving Cauchy problems for systems of ordinary differential equations is associated with the estimation of the norm of the transition operator from the current time level to a new one. The stability of operator-difference schemes for a first-order model operator-differential equation is discussed. Primary attention is given to the construction of additive schemes (splitting schemes) based on approximations of the transition operator. Specifically, classical factorized schemes, componentwise splitting schemes, and regularized operator-difference schemes are related to the use of a certain multiplicative transition operator. Additive averaged operator-difference schemes are based on an additive representation of the transition operator. The construction of second-order splitting schemes in time is discussed. Inhomogeneous additive operator-difference schemes are constructed in which various types of transition operators are used for individual splitting operators.
@article{ZVMMF_2012_52_2_a8,
     author = {P. N. Vabishchevich},
     title = {Construction of splitting schemes based on transition operator approximation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {253--262},
     year = {2012},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Construction of splitting schemes based on transition operator approximation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 253
EP  - 262
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/
LA  - ru
ID  - ZVMMF_2012_52_2_a8
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Construction of splitting schemes based on transition operator approximation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 253-262
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/
%G ru
%F ZVMMF_2012_52_2_a8
P. N. Vabishchevich. Construction of splitting schemes based on transition operator approximation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 253-262. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a8/

[1] Yanenko N.N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[2] Marchuk G.I., Metody rasschepleniya, Nauka, M., 1989

[3] Samarskii A.A., Matus P.P., Vabishchevich P.N., Difference schemes with operator factors, Kluwer Acad. Publs, Dordrecht, 2002 | MR | Zbl

[4] Samarskii A.A., Vabischevich P.N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999

[5] Peaceman D.W., Rachford Y.Y., “The numerical solution of parabolic and elliptic differential equations”, J. SIAM, 3 (1955), 28–41 | MR | Zbl

[6] Douglas J.J., Rachford Y.Y., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82 (1956), 421–439 | DOI | MR | Zbl

[7] Samarskii A.A., Teoriya raznostnykh skhem, Nauka, M., 1989

[8] Gordeziani D.G., Meladze G.V., “O modelirovanii tretei kraevoi zadachi dlya mnogomernykh parabolicheskikh uravnenii v proizvolnoi oblasti odnomernymi uravneniyami”, Zh. vychisl. matem. i matem. fiz., 14 (1974), 246–250 | MR | Zbl

[9] Abrashin V.N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki. 1”, Differents. ur-niya, 26 (1990), 214–323

[10] Abrashin V.N., Mukha V.A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. ur-niya, 28 (1992), 1986–1799

[11] Vabischevich P.N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 44–51 | MR | Zbl

[12] Samarskii A.A., Vabischevich P.N., Matus P.P., “Ustoichivost vektornykh additivnykh skhem”, Dokl. RAN, 361 (1998), 746–748 | MR | Zbl

[13] Abrashin V.N., Vabischevich P.N., “Vektornye additivnye skhemy dlya evolyutsionnykh uravnenii vtorogo poryadka”, Differents. ur-niya, 34:12 (1998), 1666–1674 | MR | Zbl

[14] Samarskii A.A., Vabischevich P.N., “Regulyarizovannye additivnye skhemy polnoi approksimatsii”, Dokl. RAN, 358 (1998), 461–464 | MR | Zbl

[15] Samarskii A.A., Gulin A.V., Ustoichivost raznostnykh skhem, Nauka, M., 1973

[16] Butcher J., Numerical methods for ordinary differential equations, Wiley, New York, 2008 | MR | Zbl

[17] Hairer E., Wanner G., Solving ordinary differential equations II: Stiff and differential–algebraic problems, Springer, Berlin, 2010 | MR

[18] Strang G., “On the construction and comparison of difference schemes”, SIAM J. Numer. Analys., 5:3 (1968), 506–517 | DOI | MR | Zbl

[19] Vabischevich P.N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR | Zbl

[20] Vabischevich P.N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach s kososimmetrichnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1121–1132 | MR | Zbl