Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 231-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a system of linear ordinary differential equations supplemented with a nonlocal condition specified by the Stieltjes integral, the problem of calculating the eigenvalues belonging to a given bounded domain in the complex plane is examined. It is assumed that the coefficient matrix of the system and the matrix function in the Stieltjes integral are analytic functions of the spectral parameter. A numerically stable method for solving this problem is proposed and justified. It is based on the use of an auxiliary boundary value problem and formulas of the argument principle type. The problem of calculating the corresponding eigenfunctions is also treated.
@article{ZVMMF_2012_52_2_a6,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {231--236},
     year = {2012},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a6/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 231
EP  - 236
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a6/
LA  - ru
ID  - ZVMMF_2012_52_2_a6
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 231-236
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a6/
%G ru
%F ZVMMF_2012_52_2_a6
A. A. Abramov; L. F. Yukhno. Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 231-236. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a6/

[1] Abramov A.A., Ulyanova V.I., Yukhno L.F., “Metod resheniya nelineinoi nesamosopryazhennoi spektralnoi zadachi dlya nekotorykh sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 104–110 | MR | Zbl

[2] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958

[3] Abramov A.A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl

[4] Abramov A.A., “O chislennoi ustoichivosti odnogo metoda perenosa granichnykh uslovii”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 401–406 | MR | Zbl

[5] Abramov A.A., Andreev B.V., “O primenenii metoda progonki k nakhozhdeniyu periodicheskikh reshenii differentsialnykh i raznostnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 377–381 | MR | Zbl

[6] Dzhangirova S.A., “O mnogotochechnykh zadachakh dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 27:9 (1987), 1375–1380 | MR

[7] Abramov A.A., Ulyanova V.I., Yukhno L.F., “Nelokalnaya kraevaya zadacha dlya singulyarnoi lineinoi sistemy obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1228–1235 | MR | Zbl