High-performance computer simulation of wave processes in geological media in seismic exploration
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 330-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of problems arising in seismic exploration are investigated, namely, seismic signal propagation in multilayered geological rock and near-surface disturbance propagation in massive rock with heterogeneities, such as empty or filled fractures and cavities. Numerical solutions are obtained for wave propagation in such highly heterogeneous media, including those taking into account the plastic properties of the rock, which can be manifested near a seismic gap or a wellbore. All types of explosion-generated elastic and elastoplastic waves and waves reflected from fractures and the boundaries of the integration domain are analyzed. The identification of waves in seismograms recorded with near-surface receivers is addressed. The grid-characteristic method is used on triangular, parallelepipedal, and tetrahedral meshes with boundary conditions set on the rock-fracture interface and on free surfaces in explicit form. The numerical method proposed is suitable for the study of the interaction between seismic waves and heterogeneous inclusions, since it ensures the most correct design of computational algorithms on the boundaries of the integration domain and at media interfaces. A parallel software code implemented with the help of OpenMP and MPI was used to execute computations on parallelepipedal and tetrahedral grids.
@article{ZVMMF_2012_52_2_a15,
     author = {I. E. Kvasov and I. B. Petrov},
     title = {High-performance computer simulation of wave processes in geological media in seismic exploration},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {330--341},
     year = {2012},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a15/}
}
TY  - JOUR
AU  - I. E. Kvasov
AU  - I. B. Petrov
TI  - High-performance computer simulation of wave processes in geological media in seismic exploration
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 330
EP  - 341
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a15/
LA  - ru
ID  - ZVMMF_2012_52_2_a15
ER  - 
%0 Journal Article
%A I. E. Kvasov
%A I. B. Petrov
%T High-performance computer simulation of wave processes in geological media in seismic exploration
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 330-341
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a15/
%G ru
%F ZVMMF_2012_52_2_a15
I. E. Kvasov; I. B. Petrov. High-performance computer simulation of wave processes in geological media in seismic exploration. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 330-341. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a15/

[1] Magomedov K.M., Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[2] Biot M.A., “Mechanics of deformation and acoustic propagation in porous media”, J. Apple Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[3] Hsu C.J., Schoenberg M., “Elastic waves through a simulated fractured medium”, Geophysics, 58:7 (1993), 964–977

[4] Molotkov L.A., Bakulin A.V., “Effektivnaya model sloistoi uprugo-poristoi sredy”, Dokl. RAN, 372:1 (2000), 108–112

[5] Kozlov E.A., “Pressure-dependent seismic response of fractured rock”, Geophysics, 1969, 885–897

[6] Thomsen L., “Weak elastic anisotropy”, Geophysics, 51 (1986), 1954–1966

[7] Hudson J.A., “Wave speeds and attention of elastic waves in materials containing cracks”, Geophys. J. Roy. Astron. Soc., 64 (1981), 133–150 | DOI | Zbl

[8] Kondaurov V.I., Fortov V.E., Osnovy termomekhaniki kondensirovannoi sredy, MFTI, M., 2002

[9] Novatskii V.K., Teoriya uprugosti, Mir, M., 1975 | MR

[10] Kozlov E.A., Modeli sredy v razvedochnoi seismologii, GERS, M., 2006

[11] Novatskii V.K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978

[12] Ivanov V.D., Kondaurov V.N., Petrov I.B., Kholodov A.S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugo-plasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–29 | MR

[13] Petrov I.B., Kholodov A.S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[14] Kholodov A.S., Kholodov Ya.A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR

[15] Petrov I.B., Chelnokov F.B., “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1562–1579 | MR | Zbl

[16] Levyant V.B., Petrov I.B., Chelnokov F.B., “Klasternaya priroda seismicheskoi energii, rasseyannoi ot zony diffuznoi kaverznosti i treschinovatosti v massivnykh porodakh”, Geofizika, 2005, no. 6, 5–19

[17] Kvasov I.E., Petrov I.B., Chelnokov F.B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matem. modelirovanie, 21:5 (2009), 3–9 | Zbl

[18] Kvasov I.E., Pankratov S.A., Petrov I.B., “Chislennoe modelirovanie seismicheskikh otklikov v mnogosloinykh geologicheskikh sredakh setochno-kharakteristicheskim metodom”, Matem. modelirovanie, 22:9 (2010), 13–22 | Zbl

[19] Kvasov I.E., Pankratov S.A., Petrov I.B., “Chislennoe issledovanie dinamicheskikh protsessov v sploshnoi srede s treschinoi, initsiiruemykh pripoverkhnostnym vozmuscheniem, setochno-kharakteristicheskim metodom”, Matem. modelirovanie, 22:11 (2010), 109–122 | MR | Zbl