Short-time dynamics of an elliptic cylinder moving in a viscous incompressible free-surface flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 319-329

Voir la notice de l'article provenant de la source Math-Net.Ru

The joint motion of a viscous incompressible fluid and a completely submerged elliptic cylinder is analyzed at short times. The cylinder is assumed to start from rest and move horizontally at a constant acceleration. A feature of the problem is that, at high accelerations, the fluid becomes detached from the cylinder surface and a cavity is formed. The problem is generalized to an elliptic cylinder floating on the surface of a viscous fluid.
@article{ZVMMF_2012_52_2_a14,
     author = {M. V. Norkin},
     title = {Short-time dynamics of an elliptic cylinder moving in a viscous incompressible free-surface flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {319--329},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a14/}
}
TY  - JOUR
AU  - M. V. Norkin
TI  - Short-time dynamics of an elliptic cylinder moving in a viscous incompressible free-surface flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 319
EP  - 329
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a14/
LA  - ru
ID  - ZVMMF_2012_52_2_a14
ER  - 
%0 Journal Article
%A M. V. Norkin
%T Short-time dynamics of an elliptic cylinder moving in a viscous incompressible free-surface flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 319-329
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a14/
%G ru
%F ZVMMF_2012_52_2_a14
M. V. Norkin. Short-time dynamics of an elliptic cylinder moving in a viscous incompressible free-surface flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 319-329. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a14/