Study of spectral characteristics of a homogeneous turbulent flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 304-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A spectral representation of kinetic energy for a vortex cascade of instability in a compressible inviscid shear flow is considered, and the Rayleigh–Taylor instability is studied. A comparative analysis is given to the spectral decompositions of kinetic energy for both problems. The classical Kolmogorov $-5/3$ power law is proved to hold for developed turbulent flows.
@article{ZVMMF_2012_52_2_a12,
     author = {O. M. Belotserkovskii and S. V. Fortova},
     title = {Study of spectral characteristics of a homogeneous turbulent flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {304--311},
     year = {2012},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a12/}
}
TY  - JOUR
AU  - O. M. Belotserkovskii
AU  - S. V. Fortova
TI  - Study of spectral characteristics of a homogeneous turbulent flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 304
EP  - 311
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a12/
LA  - ru
ID  - ZVMMF_2012_52_2_a12
ER  - 
%0 Journal Article
%A O. M. Belotserkovskii
%A S. V. Fortova
%T Study of spectral characteristics of a homogeneous turbulent flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 304-311
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a12/
%G ru
%F ZVMMF_2012_52_2_a12
O. M. Belotserkovskii; S. V. Fortova. Study of spectral characteristics of a homogeneous turbulent flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 304-311. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a12/

[1] Thomson W., “On the propagation of laminar motion through a turbulently moving inviscid liquid”, Philos. Mag. Ser. 5, 24:149 (1887), 342–353 | DOI

[2] Reynolds O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion”, Philos. Trans. Roy. Soc. London. A, 186 (1895), 123–164 | DOI

[3] Richardson L.F., “The supply of energy from and to atmospheric eddies”, Proc. Roy. Soc. London, 97A (1920), 354–373

[4] Belotserkovskii O.M., Oparin A.M., Chechetkin V.M., Turbulentnost: novye podkhody, Nauka, M., 2002

[5] Landau L.D., Lifshits E.M., Mekhanika sploshnykh sred, Gostekhteorizdat, M., 1953

[6] Chepmen D.R., “Vychislitelnaya gidrodinamika i perspektivy ee razvitiya: draidenovskaya lektsiya”, Raketnaya tekhn. i kosmonavtika, 18:2 (1980), 3–32 | Zbl

[7] Kolmogorov A.N., “Lokalnaya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 30:4 (1941), 299–303

[8] Obukhov A.M., “O raspredelenii energii v spektre turbulentnogo potoka”, Izv. AN SSSR. Ser. geogr. i geofiz., 5:4 (1941), 453–466

[9] Faber T.E., Gidroaerodinamika, Postmarket, M., 2001

[10] Kucherenko Yu.A., Shestachenko O.E., Balabin S.I. i dr., “Izmerenie spektralnykh kharakteristik zony turbulentnogo peremeshivaniya”, Prikl. mekhanika i tekhn. fiz., 51:3 (2010)

[11] Belotserkovskii O.M., “Pryamoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1856–1882 | MR | Zbl

[12] Belotserkovskii O.M., Chechetkin V.M., Fortova S.V., Oparin A.M., “The turbulence of free shear flows”, Proc. Internat. Workshop “Hot Points in Astrophysics and Cosmology”, Dubna, 2005, 191–209

[13] Yanase S., Kaga Y., Zero-absolute-vorticity-state of rotating flows between plates,, Japan–Russia Seminar on Turbulence and Instabilities (September 29–30. Tokyo, 2003)

[14] Hoffman J., Johnson C., On transition to turbulence in shear flow, Preprint, Roy. Inst. of Technol. Kunliga Tekniska, Hogskolan, 2002 | MR

[15] Oparin A.M., “Chislennoe modelirovanie problem, svyazannykh s intensivnym razvitiem gidrodinamicheskikh neustoichivostei”, Novoe v chisl. modelirovanii: algoritmy, vychisl. eksperimenty, rezultaty, Cer. Kibernetika: neogranichennye vozmozhnosti i vozmozhnye ogranicheniya, Nauka, M., 2000, 63–90

[16] Oparin A.M., “Numerical study of hydrodynamic instabilities”, Computational Fluid Dynamics J., 10:3, Spec. Issue (2001), 327–332

[17] Belotserkovskii O.M., Kraginskii L.M., Oparin A.M., “Chislennoe modelirovanie prostranstvennykh techenii v stratifitsirovannoi atmosfere, vyzvannykh silnymi krupnomasshtabnymi vozmuscheniyami”, Zh. vychisl. matem. i matem. fiz., 43:11 (2003), 1722–1736 | MR | Zbl

[18] Belotserkovskii O.M., Guschin V.A., Konshin V.N., “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 594–609 | MR | Zbl

[19] Monin A.S., Yaglom A.M., Statisticheskaya gidromekhanika, Nauka, M., 1967

[20] Fortova S.V., “The cascade mechanism in free shear flows”, 24 Internat. Conf. Interaction of Intense Energy Fluxes with Matter. (Poster Session, March 1–6. Elbrus, Russia, 2009)

[21] Belotserkovskii O.M., Fortova S.V., “Makroparametry prostranstvennykh techenii v svobodnoi sdvigovoi turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1126–1139 | MR | Zbl

[22] Belotserkovskii O.M., Oparin A.M., Troshkin O.V. i dr., “O strukturirovanii khaosa”, Zh. vychisl. matem. i matem. fiz., 51:2 (2011), 237–250 | MR | Zbl

[23] Fortova S.V., “On vortex cascades in shear flow instabilities”, Turbulent Mixing and Beyond, 2nd Internat. Conf. and Advanced School, Trieste, Italy, 2009

[24] Kovenya V.M., Yanenko N.N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981

[25] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Nauka, M., 1978