Method for solving the Boltzmann kinetic equation for polyatomic gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 270-287
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for computing the collision operator of a generalized Boltzmann kinetic equation with allowance for energy transfer from translational to vibrational or rotational degrees of freedom. The collision operator is computed using a projection method on a uniform velocity grid. The operator satisfies the mass, momentum, and energy conservation laws and vanishes for an equilibrium velocity distribution function. Approximate models are suggested that provide savings on the computation of rotational-translational relaxation. Numerical examples are presented.
@article{ZVMMF_2012_52_2_a10,
     author = {F. G. Tcheremissine},
     title = {Method for solving the {Boltzmann} kinetic equation for polyatomic gases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {270--287},
     year = {2012},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a10/}
}
TY  - JOUR
AU  - F. G. Tcheremissine
TI  - Method for solving the Boltzmann kinetic equation for polyatomic gases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 270
EP  - 287
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a10/
LA  - ru
ID  - ZVMMF_2012_52_2_a10
ER  - 
%0 Journal Article
%A F. G. Tcheremissine
%T Method for solving the Boltzmann kinetic equation for polyatomic gases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 270-287
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a10/
%G ru
%F ZVMMF_2012_52_2_a10
F. G. Tcheremissine. Method for solving the Boltzmann kinetic equation for polyatomic gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 270-287. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a10/

[1] Landau L.D., Lifshits E.M., Statisticheskaya fizika, Ch. 1, Nauka, M.; Fizmatlit, 1995, 605 pp. | Zbl

[2] Wang Chang C.S., Uhlenbeck G.E., Transport phenomena in polyatomic gases, Univ. Michigan Res. Rept No CM-681, 1951

[3] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976; Ferziger J.H., Kaper H.G., Mathematical theory of transport processes in gases, North-Holland Publ. Co., Amsterdam–London, 1972

[4] Bogdanov A.V., Dubrovskii G.V., Osipov A.I., Strelchenya V.M., Vraschatelnaya relaksatsiya v gazakh i plazme, Energoatomizdat, M., 1991

[5] Patterson G.N., Molekulyarnoe techenie gazov, FM, Moskva, 1960, 272 pp.; Patterson G.N., Molecular flow of gases, limited, John Willey Sons, Inc., London; Chapman Hall., N.-Y., 1956 | MR | Zbl

[6] Chepmen S., Kauling T., Matematicheskaya teoriya neodnorodnykh gazov, Izd-vo inostr. lit., M., 1960 ; Chapman S., Cowling T.G. The mathematical theory of non-uniform gases Cambridge. Univ. Press, 1952 | MR

[7] Beylich A.E., An interlaced system for nitrogen gas, Techn. Hochschule Rept., Aachen, 2000 | Zbl

[8] Cheremisin F.G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. RAN, 357:1 (1997), 53–56 | MR

[9] Cheremisin F.G., “Reshenie kineticheskogo uravneniya Boltsmana dlya vysokoskorostnykh techenii”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 329–343 | MR

[10] Cheremisin F.G., “Reshenie kineticheskogo uravneniya Van Chang–Ulenbeka”, Dokl. RAN, 387:4 (2002), 487–490 | MR

[11] Tcheremissine F.G., Kolobov V.I., Arslanbekov R.R., “Simulation of shock wave structure in nitrogen with realistic rotational spectrum and molecular interaction potential”, Rarefied Gas Dynamics, XXV Internat. Symp. on RGD, Novosibirsk Publ. House Siberian Branch Rus. Acad. Sci., 2007, 203–208

[12] Tcheremissine F.G., Agarwal R.K., “Computation of hypersonic shock waves in diatomic gases using the generalized Boltzmann equation”, Rarefied Gas Dynamics, XXVI Internat. Symp. on RGD, AIP Conf. proc., 1084, Melville, New York, 2009, 427–433

[13] Tcheremissine F.G., Conservative discrete ordinates method for solving Boltzmann kinetic equation, Izd-vo VTs RAN, 1996, 50 pp.

[14] Raines A.A., “Conservative method of evaluation of Boltzmann collision integrals for sylindrical symmetry”, Rarefied Gas Dynamics, v. 2, eds. R. Brun, R. Campargue, R. Gatignol, J.C. Lengrand, Cepadues-Editions, Toulouse, 1999, 173–179

[15] Korobov N.M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989, 240 pp. | MR | Zbl

[16] Cheremisin F.G., “Dvukhurovnevaya kineticheskaya model vraschatelno-postupatelnykh perekhodov v razrezhennom gaze”, Fiziko-khimicheskaya kinetika v gazovoi dinamike http://www.chemphys.edu.ru/pdf/2007-10-22-001.pdf

[17] Girshfelder Dzh., Kertiss Ch., Berd R., Molekulyarnaya teoriya gazov i zhidkostei, Izd-vo inostr. lit., M., 1961, 929 pp.; Hirschfelder J.O., Curtiss Ch.F., Bird R.B., Molecular theory of gases and liquids, limited, John Willey Sons, Inc., New York; Chapman Hall., London, 1954 | Zbl

[18] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, Part 3, J. Fluid Mech., 74 (1976), 497–513 | DOI

[19] Koura K., “Direct Monte Carlo study of rotational nonequilibrium in shock wave and spherical expansion of nitrogen using classical trajectory calculations”, Phys. Fluids, 14:5 (2002), 1689–1695 | DOI

[20] Robben F., Talbot L., “Measurements of rotational temperatures in a low density wind tunnel”, Phys. Fluids, 9:4 (1966), 644–652 | DOI