The method of augmented regularized normal equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 205-208
Cet article a éte moissonné depuis la source Math-Net.Ru
A new technique for the minimization of Tikhonov’s parametric smoothing functional for small values of the regularization parameter is proposed. The technique makes it possible to efficiently calculate normal pseudosolutions for large-scale systems of linear algebraic equations.
@article{ZVMMF_2012_52_2_a1,
author = {A. I. Zhdanov},
title = {The method of augmented regularized normal equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {205--208},
year = {2012},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a1/}
}
A. I. Zhdanov. The method of augmented regularized normal equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 205-208. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a1/
[1] Morozov V.A., “Algoritmicheskie osnovy metodov resheniya nekorrektnykh zadach”, Vychisl. metody i programmirovanie, 45 (2003), 130–141 | MR
[2] Zhdanov A.I., “Ob odnom chislenno ustoichivom algoritme resheniya sistem lineinykh algebraicheskikh uravnenii nepolnogo ranga”, Vestn. Samarskogo gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2008, no. 1(6), 149–153
[3] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999
[4] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1977