@article{ZVMMF_2012_52_2_a0,
author = {I. E. Kaporin},
title = {Using {Chebyshev} polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {179--204},
year = {2012},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a0/}
}
TY - JOUR AU - I. E. Kaporin TI - Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 179 EP - 204 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a0/ LA - ru ID - ZVMMF_2012_52_2_a0 ER -
%0 Journal Article %A I. E. Kaporin %T Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 179-204 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a0/ %G ru %F ZVMMF_2012_52_2_a0
I. E. Kaporin. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 2, pp. 179-204. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_2_a0/
[1] Garanzha V.A., Golikov A.I., Evtushenko Yu.G., Nguen M.Kh., “Parallelnaya realizatsiya metoda Nyutona dlya resheniya bolshikh zadach lineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1369–1384 | MR | Zbl
[2] Davis T.A., Hu Y.F., “University of Florida sparse matrix collection”, ACM Trans. on Math. Software, 38:1 (2011) http://www.cise.ufl.edu/research/sparse/matrices | MR | Zbl
[3] George T., Gupta A., Sarin V., An experimental evaluation of iterative solvers for large SPD systems of linear equations, IBM Res. Report RC 24479, Jan. 25, 2008
[4] Kaporin I.E., “Predobuslovlennyi metod sopryazhennykh gradientov dlya resheniya diskretnykh analogov differentsialnykh zadach”, Differents. ur-niya, 26:7 (1990), 1225–1236 | MR | Zbl
[5] Kaporin I.E., “New convergence results and preconditioning strategies for the conjugate gradient method”, Numer. Linear Algebra Appls., 1 (1994), 179–210 | DOI | MR | Zbl
[6] Kolotilina L.Yu., Yeremin A.Yu., “Factorized sparse approximate inverse preconditionings. I. Theory”, SIAM J. Matrix Anal. Appl., 14 (1993), 45–58 | DOI | MR | Zbl
[7] Chow E., “A priori sparsity patterns for parallel sparse approximate inverse preconditioners”, SIAM J. Sci. Comput., 21:5 (2000), 1804–1822 | DOI | MR | Zbl
[8] Chow E., “Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity patterns”, Internat. J. High Performance Comput. Appl., 15:1 (2001), 56–74 | DOI
[9] Kolotilina L.Yu., Nikishin A.A., Yeremin A.Yu., “Factorized sparse approximate inverse preconditionings. IV. Simple approaches to rising efficiency”, Numer. Linear Algebra Appl/, 6 (1999), 515–531 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] Kaporin I.E., “High quality preconditionings of a general symmetric positive definite matrix based on its $U^TU+U^TR+R^TU$-decomposition”, Numer. Linear Algebra Appl., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Benzi M., Tuma T., “A robust incomplete factorization preconditioner for positive definite matrices”, Numer. Linear Algebra Appl., 10 (2003), 385–400 | DOI | MR | Zbl
[12] Axelsson O., Iterative solution methods, Cambridge Univ. Press, New York, 1994 | MR | Zbl
[13] Kaporin I.E., “Explicitly preconditioned conjugate gradient method for the solution of nonsymmetric linear systems”, Internat. J. Comput. Math., 40 (1992), 169–187 | DOI
[14] Kaporin I.E., Konshin I.N., “Parallelnoe reshenie simmetrichnykh polozhitelno-opredelennykh sistem na osnove perekryvayuschegosya razbieniya na bloki”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 515–528 | MR | Zbl
[15] Kaporin I.E., Konshin I.N., “Postfiltratsiya mnozhitelei IC2-razlozheniya dlya balansirovki parallelnogo predobuslovlivaniya”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 940–957 | MR | Zbl
[16] Notay Y., “On the convergence rate of the conjugate gradients in presence of rounding errors”, Numer. Math., 65 (1993), 301–317 | DOI | MR | Zbl
[17] Jennings A., “Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method”, J. Instit. Math. and Its Applic., 20 (1977), 61–72 | DOI | MR | Zbl
[18] Axelsson O., Lindskog G., “On the rate of convergence of the preconditioned conjugate gradient method”, Numer. Math., 48:5 (1986), 499–523 | DOI | MR | Zbl
[19] Lebedev V.I., Finogenov S.A., “O poryadke vybora iteratsionnykh parametrov v chebyshevskom tsiklicheskom iteratsionnom metode”, Zh. vychisl. matem. i matem. fiz., 11:2 (1971), 425–438 | MR | Zbl
[20] Field M. R., “Adaptive polynomial preconditioning for the conjugate gradient algorithm”, Appl. Parallel Comput. in Phys., Chemistry and Engineering Science, Lecture Notes in Computer Science, 1041, 1996, 189–198 | DOI
[21] Saad Y., “Practical use of polynomial preconditionings for the conjugate gradient method”, SIAM J. Sci. and Statist. Comput., 6:4 (1985), 865–881 | DOI | MR | Zbl
[22] Johnson O.G., Micchelli C.A., Paul G., “Polynomial preconditioning for conjugate gradient calculations”, SIAM J. Numer. Anal., 20 (1983), 362–376 | DOI | MR | Zbl
[23] Ashby S.F., Manteuffel T.A., Otto.J.S., “A comparison of adaptive Chebyshev and least squares polynomial preconditioning for hermitian positive definite linear systems”, SIAM J. Sci. Statist. Comput., 13 (1992), 1–29 | DOI | MR | Zbl
[24] Kaporin I.E., “Otsenki granits spektra dvustoronnikh yavnykh predobuslovlivanii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1993, no. 2, 28–42 | MR
[25] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR
[26] Eremin A.Yu., Kaporin I.E., “Vliyanie naibolshikh sobstvennykh znachenii na chislennuyu skhodimost metoda sopryazhennykh gradientov”, Chisl. metody i vopr. organizatsii vychislenii. XIII, Zap. nauchn. seminarov POMI, 248, POMI, SPb., 1998, 5–16 | MR
[27] Ashby S.F., “Minimax polynomial preconditioning for hermitian linear systems”, SIAM. J. Matrix Anal. Appl., 12:4 (1991), 766–789 | DOI | MR | Zbl