About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 97-104
Cet article a éte moissonné depuis la source Math-Net.Ru
The Dirichlet problem for Laplace’s equation on an infinite rectangular cylinder is considered. The main goal is to develop a grid method for finding an approximate solution of the Dirichlet problem in a finite part of the infinite cylinder without solving the entire problem. The underlying idea is that the influence of the boundary values on the solution at a fixed point of the domain decreases as the boundary moves away.
@article{ZVMMF_2012_52_1_a8,
author = {E. A. Volkov},
title = {About a local grid method of a solution of {Laplace{\textquoteright}s} equation in the infinite rectangular cylinder},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {97--104},
year = {2012},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/}
}
TY - JOUR AU - E. A. Volkov TI - About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 97 EP - 104 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/ LA - ru ID - ZVMMF_2012_52_1_a8 ER -
%0 Journal Article %A E. A. Volkov %T About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 97-104 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/ %G ru %F ZVMMF_2012_52_1_a8
E. A. Volkov. About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/
[1] Volkov E.A., “O reshenii metodom setok uravneniya Laplasa v beskonechnom pryamougolnom tsilindre pri periodicheskikh granichnykh usloviyakh”, Tr. MI RAN, 269, M., 2010, 63–70 | MR | Zbl
[2] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983
[3] Samarskii A.A., Andreev V.B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976