About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 97-104

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for Laplace’s equation on an infinite rectangular cylinder is considered. The main goal is to develop a grid method for finding an approximate solution of the Dirichlet problem in a finite part of the infinite cylinder without solving the entire problem. The underlying idea is that the influence of the boundary values on the solution at a fixed point of the domain decreases as the boundary moves away.
@article{ZVMMF_2012_52_1_a8,
     author = {E. A. Volkov},
     title = {About a local grid method of a solution of {Laplace{\textquoteright}s} equation in the infinite rectangular cylinder},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 97
EP  - 104
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/
LA  - ru
ID  - ZVMMF_2012_52_1_a8
ER  - 
%0 Journal Article
%A E. A. Volkov
%T About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 97-104
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/
%G ru
%F ZVMMF_2012_52_1_a8
E. A. Volkov. About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a8/