@article{ZVMMF_2012_52_1_a7,
author = {V. A. Sobolev and E. A. Tropkina},
title = {Asymptotic expansions of slow invariant manifolds and reduction of chemical kinetics models},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {81--96},
year = {2012},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a7/}
}
TY - JOUR AU - V. A. Sobolev AU - E. A. Tropkina TI - Asymptotic expansions of slow invariant manifolds and reduction of chemical kinetics models JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 81 EP - 96 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a7/ LA - ru ID - ZVMMF_2012_52_1_a7 ER -
%0 Journal Article %A V. A. Sobolev %A E. A. Tropkina %T Asymptotic expansions of slow invariant manifolds and reduction of chemical kinetics models %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 81-96 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a7/ %G ru %F ZVMMF_2012_52_1_a7
V. A. Sobolev; E. A. Tropkina. Asymptotic expansions of slow invariant manifolds and reduction of chemical kinetics models. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a7/
[2] Vasileva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990
[3] Vasileva A.B., Butuzov V.F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo MGU, M., 1978
[4] Vasilev V.M., Volpert A.I., Khudyaev S.I., “O metode kvazistatsionarnykh kontsentratsii dlya uravnenii khimicheskoi kinetiki”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 683–697 | MR
[5] Goldshtein V.M., Sobolev V.A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, In-t matem. SO AN SSSR, Novosibirsk, 1988
[6] Kaper H.G., Kaper T.J., “Asymptotic analysis of two reduction methods for systems of chemical reactions”, Physica D, 165 (2002), 66–93 | DOI | MR | Zbl
[7] O'Malley R.E., Singular perturbations and hysteresis, eds. M.P. Mortell, A. Pokrovskii, V.A. Sobolev, SIAM, Philadelphia, 2005 | MR
[8] Sobolev V.A., Schepakina E.A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike, Fizmatlit, M., 2010
[9] Strygin V.V., Sobolev V.A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988
[10] Kononenko L.I., Sobolev V.A., “Asimptoticheskie razlozheniya medlennykh integralnykh mnogoobrazii”, Sibirskii matem. zhurnal, 35:6 (1994), 1264–1278 | MR | Zbl
[11] Mitropolskii Yu.A., Lykova O.B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1975
[12] Sobolev V.A., “Geometriya singulyarnykh vozmuschenii v vyrozhdennykh sluchayakh”, Matem. modelirovanie, 13:12 (2001), 75–94 | MR | Zbl
[13] Sobolev V.A., “Integral manifolds and decomposition of singularly perturbed system”, System and Control Letts., 1984, no. 5, 169–179 | DOI | MR | Zbl
[14] Strygin V.V., Sobolev V.A., “Vliyanie geometricheskikh i kineticheskikh parametrov i dissipatsii energii na ustoichivost orientatsii sputnikov s dvoinym vrascheniem”, Kosmich. issl., 14:3 (1976), 366–371 | MR
[15] Fehrst A., Enzyme structure and mechanisms, 2nd ed., W.F. Freeman Co., New York, 1975
[16] Murray J.D., Mathematical Biology. I. An introduction. II. Spatial Models and Biomedical Applications, Ed. 3rd, Springer, New York, 2002–2003 (Sec. Printings 2004) | MR
[17] Lam S.H., Goussis D.M., “The CSP method for simplifying kinetics”, Internat. J. Chem. Kinetics., 26 (1994), 461–486 | DOI
[18] Maas U., Pope S.B., “Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space”, Combustion and Flame, 88 (1992), 239–264 | DOI
[19] Davis M., Skodje R., “Geometric investigation of low-dimensional manifolds in systems approaching equilibrium”, J. Chem. Phys., 111 (1999), 859–874 | DOI
[20] Leineweber D.B., Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, VDI Verlag, Dusseldorf, 1999
[21] Reinhardt V., Winckler M., Lebiedz D., “Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches”, J. Phys. Chem. Ser. A., 112:8 (2008), 1712–1718 | DOI | MR
[22] Roussel M.R., Fraser S.J., “Geometry of of the steady-state approximation: Perturbation and accelerated convergence method”, J. Chem. Phys., 93 (1990), 1072–1081 | DOI
[23] Voropaeva H.V., Sobolev V.A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009
[24] Gu Z.-M., Nefedov N.N., O'Maliey R.E., Jr., “On singular singularly perturbed initial value problems”, SIAM J. Appl. Math., 49:1 (1989), 1–25 | DOI | MR | Zbl