Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 35-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For multicriteria convex optimization problems, new nonadaptive methods are proposed for polyhedral approximation of the multidimensional Edgeworth–Pareto hull (EPH), which is a maximal set having the same Pareto frontier as the set of feasible criteria vectors. The methods are based on evaluating the support function of the EPH for a collection of directions generated by a suboptimal covering on the unit sphere. Such directions are constructed in advance by applying an asymptotically effective adaptive method for the polyhedral approximation of convex compact bodies, namely, by the estimate refinement method. Due to the a priori definition of the directions, the proposed EPH approximation procedure can easily be implemented with parallel computations. Moreover, the use of nonadaptive methods considerably simplifies the organization of EPH approximation on the Internet. Experiments with an applied problem (from 3 to 5 criteria) showed that the methods are fairly similar in characteristics to adaptive methods. Therefore, they can be used in parallel computations and on the Internet.
@article{ZVMMF_2012_52_1_a4,
     author = {A. V. Lotov and T. S. Maiskaya},
     title = {Nonadaptive methods for polyhedral approximation of the {Edgeworth{\textendash}Pareto} hull using suboptimal coverings on the direction sphere},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {35--47},
     year = {2012},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/}
}
TY  - JOUR
AU  - A. V. Lotov
AU  - T. S. Maiskaya
TI  - Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 35
EP  - 47
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/
LA  - ru
ID  - ZVMMF_2012_52_1_a4
ER  - 
%0 Journal Article
%A A. V. Lotov
%A T. S. Maiskaya
%T Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 35-47
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/
%G ru
%F ZVMMF_2012_52_1_a4
A. V. Lotov; T. S. Maiskaya. Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/

[1] Lotov A.V., Bushenkov V.A., Kamenev G.K., Chernykh O.L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[2] Lotov A.V., Bushenkov V.A., Kamenev G.K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer, Boston, 2004 | MR | Zbl

[3] Lotov A.V., “Kompyuternaya vizualizatsiya obolochki Edzhvorta–Pareto i ee primenenie v intellektualnykh sistemakh podderzhki prinyatiya reshenii”, Informatsionnye tekhnologii i vychisl. sistemy, 2002, no. 1, 83–100 | MR

[4] Lotov A.V., Pospelova I.I., Mnogokriterialnye zadachi prinyatiya reshenii, MAKS Press, M., 2008

[5] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Acad. Press, Orlando, 1985 | MR | Zbl

[6] Chernykh O.L., “Approksimatsiya Pareto-obolochki vypuklogo mnozhestva mnogogrannymi mnozhestvami”, Zh. vychisl. matem. i matem. fiz., 35:8 (1995), 1285–1294 | MR | Zbl

[7] Lotov A.V., Bourmistrova L.V., Efremov R.V. et al., “Experience of model integration and Pareto frontier visualization in the search for preferable water quality strategies”, Environmental Modelling and Software, 20:2 (2005), 243–260 | DOI | MR

[8] Kamenev G.K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007

[9] Efremov R.V., Kamenev G.K., “Ob optimalnom poryadke rosta chisla vershin i gipergranei v klasse khausdorfovykh metodov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1018–1031 | MR | Zbl

[10] Sonnevend G., “Asymptotically optimal, sequential methods for the approximation of convex, compact sets in $\mathbb R^n$ in the Hausdorff metrics”, Colloquia Math. Soc. Janos Bolyai, 35:2 (1980), 1075–1089 | MR

[11] Dzholdybaeva C.M., Kamenev G.K., Eksperimentalnoe issledovanie approksimatsii vypuklykh tel mnogogrannikami, VTs AN SSSR, M., 1991

[12] Kamenev G.K., “Poliedralnaya approksimatsiya shara Metodom Glubokikh Yam s optimalnym poryadkom rosta moschnosti grannoi struktury”, Tr. Mezhdunar. konf. “Chislennaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya” (Moskva, oktyabr 2010 g.), VTs RAN, M., 2010, 47–52

[13] Gruber P.M., “Approximation of convex bodies”, Convexity and its applications, 1983, Birkhauser, Basel | MR

[14] Kamenev G.K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl

[15] Efpemov R.V., Kamenev G.K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR

[16] Burmistrova L.V., Efremov R.V., Lotov A.V., “Metodika vizualnoi podderzhki prinyatiya reshenii i ee primenenie v sistemakh upravleniya vodnymi resursami”, Izv. AN. Ser. Teoriya i sistemy upravleniya, 2002, no. 5, 89–100

[17] Kamenev G.K., “Ob approksimatsionnykh svoistvakh negladkikh vypuklykh diskov”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1464–1474 | MR | Zbl

[18] Kamenev G.K., Chislennoe issledovanie effektivnosti metodov poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2010