@article{ZVMMF_2012_52_1_a4,
author = {A. V. Lotov and T. S. Maiskaya},
title = {Nonadaptive methods for polyhedral approximation of the {Edgeworth{\textendash}Pareto} hull using suboptimal coverings on the direction sphere},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {35--47},
year = {2012},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/}
}
TY - JOUR AU - A. V. Lotov AU - T. S. Maiskaya TI - Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 35 EP - 47 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/ LA - ru ID - ZVMMF_2012_52_1_a4 ER -
%0 Journal Article %A A. V. Lotov %A T. S. Maiskaya %T Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 35-47 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/ %G ru %F ZVMMF_2012_52_1_a4
A. V. Lotov; T. S. Maiskaya. Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a4/
[1] Lotov A.V., Bushenkov V.A., Kamenev G.K., Chernykh O.L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[2] Lotov A.V., Bushenkov V.A., Kamenev G.K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer, Boston, 2004 | MR | Zbl
[3] Lotov A.V., “Kompyuternaya vizualizatsiya obolochki Edzhvorta–Pareto i ee primenenie v intellektualnykh sistemakh podderzhki prinyatiya reshenii”, Informatsionnye tekhnologii i vychisl. sistemy, 2002, no. 1, 83–100 | MR
[4] Lotov A.V., Pospelova I.I., Mnogokriterialnye zadachi prinyatiya reshenii, MAKS Press, M., 2008
[5] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Acad. Press, Orlando, 1985 | MR | Zbl
[6] Chernykh O.L., “Approksimatsiya Pareto-obolochki vypuklogo mnozhestva mnogogrannymi mnozhestvami”, Zh. vychisl. matem. i matem. fiz., 35:8 (1995), 1285–1294 | MR | Zbl
[7] Lotov A.V., Bourmistrova L.V., Efremov R.V. et al., “Experience of model integration and Pareto frontier visualization in the search for preferable water quality strategies”, Environmental Modelling and Software, 20:2 (2005), 243–260 | DOI | MR
[8] Kamenev G.K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007
[9] Efremov R.V., Kamenev G.K., “Ob optimalnom poryadke rosta chisla vershin i gipergranei v klasse khausdorfovykh metodov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1018–1031 | MR | Zbl
[10] Sonnevend G., “Asymptotically optimal, sequential methods for the approximation of convex, compact sets in $\mathbb R^n$ in the Hausdorff metrics”, Colloquia Math. Soc. Janos Bolyai, 35:2 (1980), 1075–1089 | MR
[11] Dzholdybaeva C.M., Kamenev G.K., Eksperimentalnoe issledovanie approksimatsii vypuklykh tel mnogogrannikami, VTs AN SSSR, M., 1991
[12] Kamenev G.K., “Poliedralnaya approksimatsiya shara Metodom Glubokikh Yam s optimalnym poryadkom rosta moschnosti grannoi struktury”, Tr. Mezhdunar. konf. “Chislennaya geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya” (Moskva, oktyabr 2010 g.), VTs RAN, M., 2010, 47–52
[13] Gruber P.M., “Approximation of convex bodies”, Convexity and its applications, 1983, Birkhauser, Basel | MR
[14] Kamenev G.K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl
[15] Efpemov R.V., Kamenev G.K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR
[16] Burmistrova L.V., Efremov R.V., Lotov A.V., “Metodika vizualnoi podderzhki prinyatiya reshenii i ee primenenie v sistemakh upravleniya vodnymi resursami”, Izv. AN. Ser. Teoriya i sistemy upravleniya, 2002, no. 5, 89–100
[17] Kamenev G.K., “Ob approksimatsionnykh svoistvakh negladkikh vypuklykh diskov”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1464–1474 | MR | Zbl
[18] Kamenev G.K., Chislennoe issledovanie effektivnosti metodov poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2010