Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 24-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of the finite element method in a stable smoothing algorithm for solving a model problem with given friction based on an iterative proximal regularization of the modified Lagrangian functional is analyzed. Numerical results are presented.
@article{ZVMMF_2012_52_1_a3,
     author = {N. N. Maksimova (Kushniruk) and R. V. Namm},
     title = {Finite-element solution of a model mechanical problem with friction based on a smoothing {Lagrange} multiplier method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {24--34},
     year = {2012},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a3/}
}
TY  - JOUR
AU  - N. N. Maksimova (Kushniruk)
AU  - R. V. Namm
TI  - Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 24
EP  - 34
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a3/
LA  - ru
ID  - ZVMMF_2012_52_1_a3
ER  - 
%0 Journal Article
%A N. N. Maksimova (Kushniruk)
%A R. V. Namm
%T Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 24-34
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a3/
%G ru
%F ZVMMF_2012_52_1_a3
N. N. Maksimova (Kushniruk); R. V. Namm. Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a3/

[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986

[2] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl

[3] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl

[4] Antipin A.S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modi" fikatsii funktsii Lagranzha, Preprint, VNII sistemnykh issledovanii, M., 1979

[5] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987

[6] Bertsekas D.P., Nonlinear programming, Athena Sci., Belmont, Massachusetts, 1999 | Zbl

[7] Golshtein E.G., Tretyakov N.V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989

[8] Grossman K., Kaplan A.A., Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka. Sib. otd., Novosibirsk, 1981

[9] Izmailov A.F., Solodov M.V., Chislennye metody optimizatsii, FIZMATLIT, M., 2003

[10] Rokafellar R.T., Vypuklyi analiz, Mir, M., 1973

[11] Kazufumi Ito, Karl Kunisch, “Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces”, Nonlinear Analys., 41 (2000), 591–616 | DOI | MR | Zbl

[12] Kushniruk N.N., Namm R.V., Tkachenko A.S., “Ob ustoichivom sglazhivayuschem metode resheniya modelnoi zadachi mekhaniki s treniem”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1032–1042 | MR | Zbl

[13] Namm R.V., “O edinstvennosti gladkogo resheniya v statisticheskoi zadache s treniem po zakonu Kulona i dvustoronnim kontaktom”, Prikl. matem. i mekhan., 59:2 (1995), 330–335 | MR | Zbl

[14] Vikhtenko E.M., Namm R.V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036 | MR

[15] Kushniruk N.N., Namm R.V., “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sibirskii zhurnal vychisl. matem., 12:4 (2009), 409–420 | MR

[16] Vu G., Kim S., Namm R.V., Sachkov S.A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR

[17] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979

[18] Marchuk G.I., Agoshkov Yu.M., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981

[19] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[20] Khludnev A.M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010