“Poisson” models of random fields with applications in transport theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 144-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A comparative analysis of various models of exponentially correlated random fields associated with Poisson point ensembles is given. Algorithms for the modeling of radiative transfer in random media of this type are considered. An asymptotic estimate for the particle passage probability is constructed assuming that the flow of trajectory intersections with domains of constant random density is Poisson distributed.
@article{ZVMMF_2012_52_1_a13,
     author = {G. A. Mikhailov},
     title = {{\textquotedblleft}Poisson{\textquotedblright} models of random fields with applications in transport theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {144--152},
     year = {2012},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a13/}
}
TY  - JOUR
AU  - G. A. Mikhailov
TI  - “Poisson” models of random fields with applications in transport theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 144
EP  - 152
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a13/
LA  - ru
ID  - ZVMMF_2012_52_1_a13
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%T “Poisson” models of random fields with applications in transport theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 144-152
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a13/
%G ru
%F ZVMMF_2012_52_1_a13
G. A. Mikhailov. “Poisson” models of random fields with applications in transport theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 144-152. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a13/

[1] Switzer P., “A random set process in the plane with a Markovian property”, Ann. Math. Statist., 36 (1965), 1859–1863 | DOI | MR | Zbl

[2] Mikhailov G.A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987

[3] Mikhailov G.A., Voitishek A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Uch. posobie, Izd. tsentr “Akademiya”, M., 2006

[4] Mikhailov G.A., Averina T.A., “Statisticheskoe modelirovanie neodnorodnykh sluchainykh funktsii na osnove puassonovskikh tochechnykh polei”, Dokl. RAN, 434:1 (2010), 29–32 | Zbl

[5] Prigarin S.M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967

[7] Serra J., Image analysis and mathematical morphology, Acad. Press Inc., London, 1982 | MR | Zbl

[8] Ambos A.Ju., Mikhailov G.A., “Statistical modelling of the exponentially correlated multivariate random field”, Rus. J. Numer. Analys. Math. Modeling, 26:3 (2011), 213–232 | MR

[9] Mikhailov G.A., Serednyakov A.S., “Chislennye i asimptoticheskie otsenki vliyaniya razmernosti modeli stokhasticheskoi sredy na otsenki perenosa izlucheniya”, Optika atmosfery i okeana, 10:3 (1997), 201–210