Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 124-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of phase transitions in the Ginzburg–Landau–Allen–Cahn model is considered. Necessary conditions for such transitions are proved using the moving plane technique and the nonlinear capacity method.
@article{ZVMMF_2012_52_1_a11,
     author = {E. I. Galakhov},
     title = {Conditions for the absence of a phase transition in the {Ginzburg{\textendash}Landau{\textendash}Allen{\textendash}Cahn} model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {124--132},
     year = {2012},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/}
}
TY  - JOUR
AU  - E. I. Galakhov
TI  - Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 124
EP  - 132
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/
LA  - ru
ID  - ZVMMF_2012_52_1_a11
ER  - 
%0 Journal Article
%A E. I. Galakhov
%T Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 124-132
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/
%G ru
%F ZVMMF_2012_52_1_a11
E. I. Galakhov. Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 124-132. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/

[1] Alikakos N., Evans L.C., “Continuity of the gradient for weak solutions of a degenerate parabolic equation”, J. Math. Pures et Appl., 62:3 (1993), 253–268 | MR

[2] Savin V.O., Sciunzi B., Valdinoci E., “Flat level set regularity of $p$-Laplace phase transition”, Memoirs. AMS, 182:1 (2006), 1–144 | MR

[3] Sciunzi B., Valdinoci E., “Mean curvature properties for $p$-Laplace phase transitions”, J. Europlan. Math. Soc., 7:3 (2005), 319–359 | DOI | MR | Zbl

[4] Berestycki H., Nirenberg L., “On the method of moving planes and the sliding method”, Bol. Soc. Brasil. Math. N. S., 22:1 (1991), 1–37 | DOI | MR | Zbl

[5] Dancer E.N., “Some notes on the method of moving planes”, Bull. Austral. Math. Soc., 46:3 (1992), 425–434 | DOI | MR | Zbl

[6] Damascelli L., “Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results”, Ann. Inst. H. Poincaré, 15:4 (1998), 493–516 | DOI | MR | Zbl

[7] Damascelli L., Pacella F., “Monotonicity and symmetry of solutions of $p$-Laplace equations, $1

2$, via the moving plane method”, Ann. Soc. Norm. Sup. Pisa Cl. Sci., 26:4 (1998), 689–707 | MR | Zbl

[8] Damascelli L., Sciunzi B., “Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations”, J. Diff. Eq., 206:2 (2004), 483–515 | DOI | MR | Zbl

[9] Damascelli L., Sciunzi B., “Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of $m$-Laplace equations”, Calc. Var., 25:2 (2006), 139–159 | DOI | MR | Zbl

[10] Mitidieri E., Pokhozhaev S.I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN im. V.A. Steklova, 234, Nauka, M., 2001 | MR

[11] Vàzquez J.L., “A strong maximum principle for some quasilinear elliptic equations”, App. Math. Optimizat., 12:1 (1984), 191–202 | DOI | MR | Zbl