@article{ZVMMF_2012_52_1_a11,
author = {E. I. Galakhov},
title = {Conditions for the absence of a phase transition in the {Ginzburg{\textendash}Landau{\textendash}Allen{\textendash}Cahn} model},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {124--132},
year = {2012},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/}
}
TY - JOUR AU - E. I. Galakhov TI - Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 124 EP - 132 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/ LA - ru ID - ZVMMF_2012_52_1_a11 ER -
%0 Journal Article %A E. I. Galakhov %T Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 124-132 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/ %G ru %F ZVMMF_2012_52_1_a11
E. I. Galakhov. Conditions for the absence of a phase transition in the Ginzburg–Landau–Allen–Cahn model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 124-132. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a11/
[1] Alikakos N., Evans L.C., “Continuity of the gradient for weak solutions of a degenerate parabolic equation”, J. Math. Pures et Appl., 62:3 (1993), 253–268 | MR
[2] Savin V.O., Sciunzi B., Valdinoci E., “Flat level set regularity of $p$-Laplace phase transition”, Memoirs. AMS, 182:1 (2006), 1–144 | MR
[3] Sciunzi B., Valdinoci E., “Mean curvature properties for $p$-Laplace phase transitions”, J. Europlan. Math. Soc., 7:3 (2005), 319–359 | DOI | MR | Zbl
[4] Berestycki H., Nirenberg L., “On the method of moving planes and the sliding method”, Bol. Soc. Brasil. Math. N. S., 22:1 (1991), 1–37 | DOI | MR | Zbl
[5] Dancer E.N., “Some notes on the method of moving planes”, Bull. Austral. Math. Soc., 46:3 (1992), 425–434 | DOI | MR | Zbl
[6] Damascelli L., “Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results”, Ann. Inst. H. Poincaré, 15:4 (1998), 493–516 | DOI | MR | Zbl
[7] Damascelli L., Pacella F., “Monotonicity and symmetry of solutions of $p$-Laplace equations, $1
2$, via the moving plane method”, Ann. Soc. Norm. Sup. Pisa Cl. Sci., 26:4 (1998), 689–707 | MR | Zbl[8] Damascelli L., Sciunzi B., “Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations”, J. Diff. Eq., 206:2 (2004), 483–515 | DOI | MR | Zbl
[9] Damascelli L., Sciunzi B., “Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of $m$-Laplace equations”, Calc. Var., 25:2 (2006), 139–159 | DOI | MR | Zbl
[10] Mitidieri E., Pokhozhaev S.I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN im. V.A. Steklova, 234, Nauka, M., 2001 | MR
[11] Vàzquez J.L., “A strong maximum principle for some quasilinear elliptic equations”, App. Math. Optimizat., 12:1 (1984), 191–202 | DOI | MR | Zbl