Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 112-123
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the questions of one-valued solvability of mixed value problem for nonlinear integro-differential equation, consisting a parabolic operator of higher power. By the aid of Fourier series of separation variables the considering problem we can reduce to study the countable system of nonlinear integral equations, one-valued solvability of which will be proved by the method of successive approximations. The convergence of Fourier series will be studied by means of integral identity.
@article{ZVMMF_2012_52_1_a10,
     author = {T. K. Yuldashev},
     title = {Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {112--123},
     year = {2012},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 112
EP  - 123
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/
LA  - ru
ID  - ZVMMF_2012_52_1_a10
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 112-123
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/
%G ru
%F ZVMMF_2012_52_1_a10
T. K. Yuldashev. Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/

[1] Chernyatin V.A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, M., 1991

[2] Baikuziev K., Osnovnye smeshannye zadachi dlya nekotorykh vyrozhdayuschikhsya uravnenii s chastnymi proizvodnymi, Fan, Tashkent, 1984

[3] Yuldasheva A.V., Pryamye i obratnye zadachi dlya uravnenii smeshannogo tipa chetnogo poryadka, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, Tashkent, 2010

[4] Yuldashev T.K., “O smeshannoi zadache dlya nelineinogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s otrazhayuschim otkloneniem”, Vestn. YuzhUralGU. Ser. Matematika, Mekhanika, Fizika, 4:10 (227) (2011), 40–48