Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 112-123
We study the questions of one-valued solvability of mixed value problem for nonlinear integro-differential equation, consisting a parabolic operator of higher power. By the aid of Fourier series of separation variables the considering problem we can reduce to study the countable system of nonlinear integral equations, one-valued solvability of which will be proved by the method of successive approximations. The convergence of Fourier series will be studied by means of integral identity.
@article{ZVMMF_2012_52_1_a10,
author = {T. K. Yuldashev},
title = {Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {112--123},
year = {2012},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/}
}
TY - JOUR AU - T. K. Yuldashev TI - Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 112 EP - 123 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/ LA - ru ID - ZVMMF_2012_52_1_a10 ER -
%0 Journal Article %A T. K. Yuldashev %T Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 112-123 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/ %G ru %F ZVMMF_2012_52_1_a10
T. K. Yuldashev. Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a10/
[1] Chernyatin V.A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, M., 1991
[2] Baikuziev K., Osnovnye smeshannye zadachi dlya nekotorykh vyrozhdayuschikhsya uravnenii s chastnymi proizvodnymi, Fan, Tashkent, 1984
[3] Yuldasheva A.V., Pryamye i obratnye zadachi dlya uravnenii smeshannogo tipa chetnogo poryadka, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, Tashkent, 2010
[4] Yuldashev T.K., “O smeshannoi zadache dlya nelineinogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s otrazhayuschim otkloneniem”, Vestn. YuzhUralGU. Ser. Matematika, Mekhanika, Fizika, 4:10 (227) (2011), 40–48