Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 4-7
Voir la notice de l'article provenant de la source Math-Net.Ru
Takagi’s decomposition is an analog (for complex symmetric matrices and for unitary similarities replaced by unitary congruences) of the eigenvalue decomposition of Hermitian matrices. It is shown that, if a complex matrix is not only symmetric but is also unitary, then its Takagi decomposition can be found by quadratic radicals, that is, by means of a finite algorithm that involves arithmetic operations and quadratic radicals. A similar fact is valid for the eigenvalue decomposition of reflections, which are Hermitian unitary matrices.
@article{ZVMMF_2012_52_1_a1,
author = {Kh. D. Ikramov},
title = {Takagi{\textquoteright}s decomposition of a symmetric unitary matrix as a finite algorithm},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {4--7},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/}
}
TY - JOUR AU - Kh. D. Ikramov TI - Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 4 EP - 7 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/ LA - ru ID - ZVMMF_2012_52_1_a1 ER -
Kh. D. Ikramov. Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 4-7. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/