Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 4-7

Voir la notice de l'article provenant de la source Math-Net.Ru

Takagi’s decomposition is an analog (for complex symmetric matrices and for unitary similarities replaced by unitary congruences) of the eigenvalue decomposition of Hermitian matrices. It is shown that, if a complex matrix is not only symmetric but is also unitary, then its Takagi decomposition can be found by quadratic radicals, that is, by means of a finite algorithm that involves arithmetic operations and quadratic radicals. A similar fact is valid for the eigenvalue decomposition of reflections, which are Hermitian unitary matrices.
@article{ZVMMF_2012_52_1_a1,
     author = {Kh. D. Ikramov},
     title = {Takagi{\textquoteright}s decomposition of a symmetric unitary matrix as a finite algorithm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {4--7},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 4
EP  - 7
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/
LA  - ru
ID  - ZVMMF_2012_52_1_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 4-7
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/
%G ru
%F ZVMMF_2012_52_1_a1
Kh. D. Ikramov. Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 4-7. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/