Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 4-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Takagi’s decomposition is an analog (for complex symmetric matrices and for unitary similarities replaced by unitary congruences) of the eigenvalue decomposition of Hermitian matrices. It is shown that, if a complex matrix is not only symmetric but is also unitary, then its Takagi decomposition can be found by quadratic radicals, that is, by means of a finite algorithm that involves arithmetic operations and quadratic radicals. A similar fact is valid for the eigenvalue decomposition of reflections, which are Hermitian unitary matrices.
@article{ZVMMF_2012_52_1_a1,
     author = {Kh. D. Ikramov},
     title = {Takagi{\textquoteright}s decomposition of a symmetric unitary matrix as a finite algorithm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {4--7},
     year = {2012},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 4
EP  - 7
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/
LA  - ru
ID  - ZVMMF_2012_52_1_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 4-7
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/
%G ru
%F ZVMMF_2012_52_1_a1
Kh. D. Ikramov. Takagi’s decomposition of a symmetric unitary matrix as a finite algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 1, pp. 4-7. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_1_a1/

[1] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989