@article{ZVMMF_2012_52_12_a7,
author = {A. D. Bruno},
title = {Power-elliptic expansions of solutions to an ordinary differential equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2206--2218},
year = {2012},
volume = {52},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/}
}
TY - JOUR AU - A. D. Bruno TI - Power-elliptic expansions of solutions to an ordinary differential equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 2206 EP - 2218 VL - 52 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/ LA - ru ID - ZVMMF_2012_52_12_a7 ER -
A. D. Bruno. Power-elliptic expansions of solutions to an ordinary differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2206-2218. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/
[1] Bryuno A. D., “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, Uspekhi Matem. Nauk, 59:3 (2004), 31–80 | MR | Zbl
[2] Bruno A. D., “Space Power geometry for an ODE and Painlevé equations”, Painleve Equations and Related Topics, Internat. Conf. (St. Petersburg, June 2011), 36–41 http://www.pdmi.ras.ru/EIMI/2011/PC/proceedings.pdf
[3] Bryuno A. D., “Stepenno-eksponentsialnye razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, Dokl. AN, 444:2 (2012), 137–142 | MR
[4] Bryuno A. D., Stepenno-ellipticheskie razlozheniya reshenii ODU, Preprint No 60, , IPMatem. RAN, M., 2011, 19 pp. http://www.keldysh.ru/papers/2011/source/prep2011_60.pdf | MR
[5] Bruno A. D., “Space Power geometry try for one ODE and $P_1$–$P_4$, $P_6$”, Painleve Equations and Related Topics, eds. A. D. Bruno, A. B. Batkhin, Walter de Gruyter, Berlin–Boston, 2012, 41–51 | MR
[6] Bruno A. D., Parusnikova A. V., “Elliptic and periodic asymptotic forms of solution to $P_5$”, Painleve Equations and Related Topics, eds. A. D. Bruno, A. B. Batkhin, Walter de Gruyter, Berlin–Boston, 2012, 53–65
[7] Bruno A. D., “Regular asymptotic expansions of solutions to one ODE and $P_1$–$P_5$”, Painleve Equations and Related Topics, eds. A. D. Bruno, A. B. Batkhin, Walter de Gruyter, Berlin–Boston, 2012, 67–82