Power-elliptic expansions of solutions to an ordinary differential equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2206-2218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A rather general ordinary differential equation is considered that can be represented as a polynomial in variables and derivatives. For this equation, the concept of power-elliptic expansions of its solutions is introduced and a method for computing them is described. It is shown that such expansions of solutions exist for the first and second Painlevé equations.
@article{ZVMMF_2012_52_12_a7,
     author = {A. D. Bruno},
     title = {Power-elliptic expansions of solutions to an ordinary differential equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2206--2218},
     year = {2012},
     volume = {52},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - Power-elliptic expansions of solutions to an ordinary differential equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2206
EP  - 2218
VL  - 52
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/
LA  - ru
ID  - ZVMMF_2012_52_12_a7
ER  - 
%0 Journal Article
%A A. D. Bruno
%T Power-elliptic expansions of solutions to an ordinary differential equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2206-2218
%V 52
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/
%G ru
%F ZVMMF_2012_52_12_a7
A. D. Bruno. Power-elliptic expansions of solutions to an ordinary differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2206-2218. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a7/

[1] Bryuno A. D., “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, Uspekhi Matem. Nauk, 59:3 (2004), 31–80 | MR | Zbl

[2] Bruno A. D., “Space Power geometry for an ODE and Painlevé equations”, Painleve Equations and Related Topics, Internat. Conf. (St. Petersburg, June 2011), 36–41 http://www.pdmi.ras.ru/EIMI/2011/PC/proceedings.pdf

[3] Bryuno A. D., “Stepenno-eksponentsialnye razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, Dokl. AN, 444:2 (2012), 137–142 | MR

[4] Bryuno A. D., Stepenno-ellipticheskie razlozheniya reshenii ODU, Preprint No 60, , IPMatem. RAN, M., 2011, 19 pp. http://www.keldysh.ru/papers/2011/source/prep2011_60.pdf | MR

[5] Bruno A. D., “Space Power geometry try for one ODE and $P_1$–$P_4$, $P_6$”, Painleve Equations and Related Topics, eds. A. D. Bruno, A. B. Batkhin, Walter de Gruyter, Berlin–Boston, 2012, 41–51 | MR

[6] Bruno A. D., Parusnikova A. V., “Elliptic and periodic asymptotic forms of solution to $P_5$”, Painleve Equations and Related Topics, eds. A. D. Bruno, A. B. Batkhin, Walter de Gruyter, Berlin–Boston, 2012, 53–65

[7] Bruno A. D., “Regular asymptotic expansions of solutions to one ODE and $P_1$–$P_5$”, Painleve Equations and Related Topics, eds. A. D. Bruno, A. B. Batkhin, Walter de Gruyter, Berlin–Boston, 2012, 67–82