Stability estimates in identification problems for the convection-diffusion-reaction equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2190-2205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Identification problems for the stationary convection-diffusion-reaction equation in a bounded domain with a Dirichlet condition imposed on the boundary of the domain are studied. By applying an optimization method, these problems are reduced to inverse extremum problems in which the variable diffusivity and the volume density of substance sources are used as control functions. Their solvability is proved for an arbitrary weakly lower semicontinuous cost functional and particular cost functionals. An analysis of the optimality system is used to establish sufficient conditions on the input data under which the solutions of particular extremum problems are unique and stable with respect to small perturbations in the cost functional and in one of the functions involved in the boundary value problem.
@article{ZVMMF_2012_52_12_a6,
     author = {G. V. Alekseev and I. S. Vakhitov and O. V. Soboleva},
     title = {Stability estimates in identification problems for the convection-diffusion-reaction equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2190--2205},
     year = {2012},
     volume = {52},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a6/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - I. S. Vakhitov
AU  - O. V. Soboleva
TI  - Stability estimates in identification problems for the convection-diffusion-reaction equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2190
EP  - 2205
VL  - 52
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a6/
LA  - ru
ID  - ZVMMF_2012_52_12_a6
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A I. S. Vakhitov
%A O. V. Soboleva
%T Stability estimates in identification problems for the convection-diffusion-reaction equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2190-2205
%V 52
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a6/
%G ru
%F ZVMMF_2012_52_12_a6
G. V. Alekseev; I. S. Vakhitov; O. V. Soboleva. Stability estimates in identification problems for the convection-diffusion-reaction equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2190-2205. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a6/

[1] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[2] Ito K., Kunisch K., “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 14 (1997), 995–1013 | DOI | MR

[3] Chavent G., Kunisch K., “The output least squares identifiability of the duffusion coefficient from an $H^1$-observation in a 2-D elliptic equation”, ESAIM: Control, Optimizat. and Calculus of Variations, 2002, no. 8, 423–440 | DOI | MR | Zbl

[4] Agoshkov V. I., Minuk F. P., Rusakov A. S., Zalesny V. B., “Study and solution of identification problems for nonstationary 2D- and 3D-convection-diffusion equation”, Russ. J. Numer. Anal. Math. Modelling, 20:1 (2005), 19–43 | DOI | MR | Zbl

[5] Gongsheng L., De Y., Fugui Y., “An inverse problem of identifying source coefficient in solute transportation”, J. Inv. Ill-Posed Problems, 2008, no. 16, 51–63 | MR | Zbl

[6] Alekseev G. V., Tereshko D. A., “Ekstremalnye zadachi granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Prikl. mekhan. tekh. fiz., 51:4 (2010), 72–84 | MR

[7] Alekseev G. V., Khludnev A. M., “Ustoichivost reshenii ekstremalnykh zadach granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Sibirskii zh. industr. matem., 13:4 (2010), 5–18 | Zbl

[8] Pyatkov S. G., “On some classes of inverse problems for parabolic equations”, J. Inv. Ill-Posed Problems, 18:8 (2011), 917–934 | MR

[9] Alekseev G. V., Tereshko D. A., “Dvukhparametricheskie ekstremalnye zadachi granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1645–1664 | MR

[10] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988 | MR | Zbl

[11] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004

[12] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[13] Alekseev G. V., “Edinstvennost i ustoichivost v koeffitsientnykh obratnykh ekstremalnykh zadachakh dlya statsionarnoi modeli massoperenosa”, Dokl. RAN, 416:6 (2007), 750–753 | MR

[14] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhan. tekhn. fiz., 2008, no. 49, 24–35 | MR

[15] Vakhitov I. S., “Obratnaya zadacha identifikatsii neizvestnogo koeffitsienta v uravnenii diffuzii-reaktsii”, Dalnevost. matem. zh., 10:2 (2010), 93–105 | MR

[16] Sobolev O. V., “Obratnye ekstremalnye zadachi dlya statsionarnogo uravneniya konvektsii-diffuzii-reaktsii”, Dalnevost. matem. zh., 10:2 (2010), 170–184 | MR

[17] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sibirskii zh. vychisl. matem., 12:4 (2009), 421–434 | Zbl

[18] Agoshkov V. I., “Optimal control methods in inverse problems and computational processes”, J. Inv. Ill-Posed. Problems, 9:3 (2001), 205–218 | MR | Zbl

[19] Ismail-zade A. T., Korotkii A. I., Naimark B. M., Tsepelev I. A., “Trekhmernoe chislennoe modelirovanie obratnoi zadachi teplovoi konvektsii”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 614–626 | MR | Zbl

[20] Ismail-zade A. T., Korotkii A. I., Tsepelev I. A., “Trekhmernoe chislennoe modelirovanie obratnoi retrospektivnoi zadachi teplovoi konvektsii na osnove metoda kvaziobrascheniya”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2277–2282 | MR

[21] Korotkii A. I., Tsepelev I. A., “Pryamye i obratnye zadachi dinamiki vysokovyazkoi zhidkosti”, Avtomatika i telemekhan., 2007, no. 5, 84–96 | MR

[22] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[23] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[24] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[25] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973