Multiplier methods for optimization problems with Lipschitzian derivatives
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2140-2148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Optimization problems for which the objective function and the constraints have locally Lipschitzian derivatives but are not assumed to be twice differentiable are examined. For such problems, analyses of the local convergence and the convergence rate of the multiplier (or the augmented Lagrangian) method and the linearly constraint Lagrangian method are given.
@article{ZVMMF_2012_52_12_a2,
     author = {A. F. Izmailov and A. S. Kurennoy},
     title = {Multiplier methods for optimization problems with {Lipschitzian} derivatives},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2140--2148},
     year = {2012},
     volume = {52},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a2/}
}
TY  - JOUR
AU  - A. F. Izmailov
AU  - A. S. Kurennoy
TI  - Multiplier methods for optimization problems with Lipschitzian derivatives
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2140
EP  - 2148
VL  - 52
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a2/
LA  - ru
ID  - ZVMMF_2012_52_12_a2
ER  - 
%0 Journal Article
%A A. F. Izmailov
%A A. S. Kurennoy
%T Multiplier methods for optimization problems with Lipschitzian derivatives
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2140-2148
%V 52
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a2/
%G ru
%F ZVMMF_2012_52_12_a2
A. F. Izmailov; A. S. Kurennoy. Multiplier methods for optimization problems with Lipschitzian derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2140-2148. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a2/

[1] Rockafellar R. T., “Computational schemes for solving large-scale problems in extended linear-quadratic programming”, Math. Program., 48 (1990), 447–474 | DOI | MR | Zbl

[2] Rockafellar R. T., Wets J. B., “Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time”, SIAM J. Control Optimizat., 28 (1990), 810–922 | DOI | MR

[3] Qi L., “Superlinearly convergent approximate Newton methods for $\mathrm{LC}^1$ optimization problems”, Math. Program., 64 (1994), 277–294 | DOI | MR | Zbl

[4] Klatte D., Tammer K., “On the second order sufficient conditions to perturbed $C^{1,1}$ optimization problems”, Optimization, 19 (1988), 169–180 | DOI | MR

[5] Qi L., $\mathrm{LC}^1$ functions and $\mathrm{LC}^1$ optimization problems, Technical Report AMR 91/21, School of Mathematics, The University of New South Wales, Sydney, 1991

[6] Izmailov A. F., Solodov M. V., “The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions”, Math. Operat. Res., 27 (2002), 614–635 | DOI | MR | Zbl

[7] Stein O., “Lifting mathematical programs with complementarity constraints”, Math. Program., 131 (2012), 71–94 | DOI | MR | Zbl

[8] Izmailov A. F., Pogosyan A. L., Solodov M. V., “Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints”, Comput. Optimizat. Appl., 51 (2012), 199–221 | DOI | MR | Zbl

[9] LANCELOT http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml

[10] ALGENCAN http://www.ime.usp.br/ẽgbirgin/tango/

[11] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[12] Izmailov A. F., Solodov M. F., Chislennye metody optimizatsii, 2-e izd., pererab. i dop., Fizmatlit, M., 2008

[13] Fernández D., Solodov M. V., “Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition”, SIAM J. Optimizat., 22:2 (2012), 384–407 | DOI | MR | Zbl

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[15] Robinson S. M., “A quadratically convergent algorithm for general nonlinear programming problems”, Math. Program., 3 (1972), 145–156 | DOI | MR | Zbl

[16] Murtagh B. A., Saunders M. A., “A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints”, Math. Program. Study, 16 (1982), 84–117 | DOI | MR | Zbl

[17] Friedlander M. P., Saunders M. A., “A globally convergent linearly constrained Lagrangian method for nonlinear optimization”, SIAM J. Optimizat., 15 (2005), 863–897 | DOI | MR | Zbl

[18] Murtagh B. A., Saunders M. A., MINOS 5.0 user's guide, Technical Report SOL 83.20, Stanford University, 1983 | Zbl

[19] Izmailov A. F., Solodov M. V., “Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization”, Comput. Optimizat. Appl., 46 (2010), 347–368 | DOI | MR | Zbl

[20] Robinson S. M., “Strongly regular generalized equations”, Math. Oper. Res., 5 (1980), 43–62 | DOI | MR | Zbl

[21] Dontchev A. L., Rockafellar R. T., Implicit functions and solution mappings, Springer, New York, 2009 | MR

[22] Robinson S. M., “Newton's method for a class of nonsmooth functions”, Set-Valued Analysis, 2 (1994), 291–305 | DOI | MR | Zbl

[23] Dontchev A. L., Rockafellar R. T., “Newton's method for generalized equations: a sequential implicit function theorem”, Math. Program., 123 (2010), 139–159 | DOI | MR | Zbl

[24] Josephy N. H., Newton's method for generalized equations, Technical Summary Report No 1965, Mathematics Research Center, University of Wisconsin, Madison, 1979

[25] Josephy N. H., Quasi-Newton methods for generalized equations, Technical Summary Report No 1966, Mathematics Research Center, University of Wisconsin, Madison, 1979

[26] Izmailov A. F., Strongly regular nonsmooth generalized equations, IMPA preprint serie D 096/2012, IMPA, Rio de Janeiro, 2012

[27] Izmailov A. F., Kurennoy A. S., Solodov M. V., “The Josephy–Newton method for semismooth generalized equations and semismooth SQP for optimization”, Set-Valued Var. Analys., 2012 | DOI | MR