Stabilization of equilibrium MHD configurations by external currents
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2238-2246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the viscous incompressible magnetohydrodynamic equations, a control by external currents is proposed that exponentially stabilizes an equilibrium configuration of conductive liquid. The linear feedback control operator has a finite-dimensional image and can be localized in a certain part of the flow region.
@article{ZVMMF_2012_52_12_a10,
     author = {A. Yu. Chebotarev},
     title = {Stabilization of equilibrium {MHD} configurations by external currents},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2238--2246},
     year = {2012},
     volume = {52},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a10/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
TI  - Stabilization of equilibrium MHD configurations by external currents
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2238
EP  - 2246
VL  - 52
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a10/
LA  - ru
ID  - ZVMMF_2012_52_12_a10
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%T Stabilization of equilibrium MHD configurations by external currents
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2238-2246
%V 52
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a10/
%G ru
%F ZVMMF_2012_52_12_a10
A. Yu. Chebotarev. Stabilization of equilibrium MHD configurations by external currents. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2238-2246. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a10/

[1] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[2] Sermange M., Temam R., “Some mathematical questions related to the MHD equations”, Comm. on Pure and Appl. Math., 36 (1983), 635–664 | DOI | MR | Zbl

[3] Chebotarëv A. Yu., Savenkova A. S., “Variatsionnye neravenstva v magnitnoi gidrodinamike”, Matem. zametki, 82:1 (2007), 135–149 | DOI | MR | Zbl

[4] Chebotarëv A. Yu., “Subdifferentsialnye kraevye zadachi magnitnoi gidrodinamiki”, Differents. ur-niya, 43:12 (2007), 1700–1709 | MR | Zbl

[5] Chebotarëv A. Yu., “Upravlenie magnitogidrodinamicheskim techeniem pri sozdanii magnitnogo polya zadannoi konfiguratsii”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 2001–2009 | MR | Zbl

[6] Barbu V., Sritharan S. S., “Feedback stabilization of the magneto-hydrodynamic system”, Semigroups of Operators: Theory and Applications, Proc. of the Second Internat. Conf. (Brazil, Rio de Janeiro, 2002), 381 pp.

[7] Vazquyez R., Krstic M., Control of turbulent and magnetohydrodynamic channel flows. Boundary stabilization and state estimation, Birkhäuser, Boston, 2008 | MR

[8] Ravindran S. S., “On the Dynamics of Controlled Magnetohydrodynamic Systems”, Nonlinear Analys. Modelling and Control, 13:3 (2008), 351–377 | MR | Zbl

[9] Wang L., “Optimal Control of Magnetohydrodynamic Equations with State Constraint”, J. Optimizat. Theory and Appl., 122:3 (2004), 599–626 | DOI | MR | Zbl

[10] Barbu V., Havarneanu T., Popa C., Sritharan S. S., “Exact controllability for the magnetohydrodynamic equations”, Communs. Pure and Appl. Math., 56:6, 732–783 | DOI | MR | Zbl

[11] Chebotarëv A. Yu., “Optimalnoe upravlenie v nestatsionarnykh zadachakh magnitnoi gidrodinamiki”, Sibirskii zhurnal industr. matem., 10:3 (2007), 138–148 | MR | Zbl

[12] Amosova E. V., “Optimalnoe upravlenie magnitogidrodinamicheskim techeniem vyazkogo teploprovodnogo gaza”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 623–632 | MR | Zbl

[13] Fursikov A. V., “Stabilizability of two-dimensional Navier–Stokes equations with help of a boundary feedback control”, J. Math. Fluid. Mech., 3:3 (2001), 259–301 | DOI | MR | Zbl

[14] Fursikov A. V., “Stabilizatsiya s granitsy reshenii sistemy Nave–Stoksa: razreshimost i obosnovanie vozmozhnosti chislennogo modelirovaniya”, Dalnevostochnyi matem. zhurnal, 4:1 (2003), 86–100 | MR

[15] Fursikov A. V., “Stabilization for the 3D Navier-Stokes system by feedback boundary control”, Discrete and Control. Dyn. Syst., 10:1–2 (2004), 289–314 | MR | Zbl

[16] Fursikov A. V., Gorshkov A. V., “Certain questions of beedback stabilization for Navier–Stokes equations”, Evol. Equat. Control. Theory, 1:1 (2012), 109–134 | DOI

[17] Barbu V., Sritharan S. S., “Feedback stabilization of the magneto-hydrodynamic system”, Semigroups of Operators: Theory and Applications, Proceedings of the Second International Conference (Rio de Janeiro, Brazil, 2002), 381 pp. | MR

[18] Barbu V., “Feedback stabilization of Navier–Stokes equations”, ESAIM: Control, Optimisat. and Calculus Variations, 9 (2003), 197–205 | DOI | MR

[19] Barbu V., Triggiani R., “Internal stabilization of Navier–Stokes equations with finite-dimensional controllers”, Indiana Univ. Math. J., 53:5 (2004), 1443–1494 | DOI | MR | Zbl

[20] Barbu V., Lasiecka I., Triggiani R., “Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers”, Nonlinear Analys., 64:12 (2006), 2704–2746 | DOI | MR | Zbl

[21] Raymond J.-P., “Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations”, J. Math. Pures. Appl., 87:6 (2007), 627–669 | MR | Zbl

[22] Ravindran S. S., “Stabilization of Navier–Stokes equations by boundary feedback”, Intern. J. Numer. Analys. and Modeling, 4:3–4 (2007), 608–624 | MR | Zbl

[23] Chebotarëv A. Yu., “Stabilizatsiya neustoichivykh ravnovesnykh konfiguratsii v magnitnoi gidrodinamike”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 312–318 | MR | Zbl

[24] Chebotarëv A. Yu., “Konechnomernaya stabilizatsiya statsionarnykh sistem Nave–Stoksa”, Differents. ur-niya, 48:3 (2012), 386–392 | Zbl