Взвешенное сингулярное разложение и взвешенное псевдообращение матриц с вырожденными весами
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2115-2132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_12_a0,
     author = {E. F. Galba and V. S. Deineka and I. V. Sergienko},
     title = {{\CYRV}{\cyrz}{\cyrv}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyre} {\cyrs}{\cyri}{\cyrn}{\cyrg}{\cyru}{\cyrl}{\cyrya}{\cyrr}{\cyrn}{\cyro}{\cyre} {\cyrr}{\cyra}{\cyrz}{\cyrl}{\cyro}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyri} {\cyrv}{\cyrz}{\cyrv}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyre} {\cyrp}{\cyrs}{\cyre}{\cyrv}{\cyrd}{\cyro}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrshch}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyrm}{\cyra}{\cyrt}{\cyrr}{\cyri}{\cyrc} {\cyrs} {\cyrv}{\cyrery}{\cyrr}{\cyro}{\cyrzh}{\cyrd}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyrv}{\cyre}{\cyrs}{\cyra}{\cyrm}{\cyri}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2115--2132},
     year = {2012},
     volume = {52},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a0/}
}
TY  - JOUR
AU  - E. F. Galba
AU  - V. S. Deineka
AU  - I. V. Sergienko
TI  - Взвешенное сингулярное разложение и взвешенное псевдообращение матриц с вырожденными весами
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2115
EP  - 2132
VL  - 52
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a0/
LA  - ru
ID  - ZVMMF_2012_52_12_a0
ER  - 
%0 Journal Article
%A E. F. Galba
%A V. S. Deineka
%A I. V. Sergienko
%T Взвешенное сингулярное разложение и взвешенное псевдообращение матриц с вырожденными весами
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2115-2132
%V 52
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a0/
%G ru
%F ZVMMF_2012_52_12_a0
E. F. Galba; V. S. Deineka; I. V. Sergienko. Взвешенное сингулярное разложение и взвешенное псевдообращение матриц с вырожденными весами. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 12, pp. 2115-2132. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_12_a0/

[1] Van Loan C. F., “Generalizing the singular value decomposition”, SIAM J. Numer. Anal., 13:1 (1976), 76–83 | DOI | MR | Zbl

[2] Galba E. F., “Vzveshennoe singulyarnoe razlozhenie i vzveshennoe psevdoobraschenie matrits”, Ukr. matem. zhurnal, 48:10 (1996), 1426–1430 | MR | Zbl

[3] Wei Y., Wu H., “The representation and approximation for the weighted Moore–Penrose inverse”, Appl. Math. Comput., 121 (2001), 17–28 | DOI | MR | Zbl

[4] Wei Y., Wang D., “Condition numbers and perturbation of the weighted Moore–Penrose inverse and weighted linear least squares problem”, Appl. Math. Comput., 145 (2003), 45–58 | DOI | MR | Zbl

[5] Ji J., Wei Y., “A note on the sensitiviti of the solution of the weighted linear least squares problem”, Appl. Math. Comput., 145 (2003), 481–485 | DOI | MR | Zbl

[6] Nikolaevskaya E. A., Khimich A. N., “Otsenka pogreshnosti vzveshennogo normalnogo psevdoresheniya s polozhitelno-opredelennymi vesami”, Zh. vychisl. matem. i matem. fiz., 49:3 (2009), 422–430 | MR | Zbl

[7] Wang D., “Some topics on weighted Moore–Penrose inverse, weighted least squares and weighted regularized Tikhonov problems”, Appl. Math. Comput., 157 (2004), 243–267 | DOI | MR | Zbl

[8] Sergienko I. V., Galba E. F., Deineka V. S., “Razlozhenie vzveshennykh psevdoobratnykh matrits v matrichnye stepennye proizvedeniya”, Ukrainskii matem. zhurnal, 56:11 (2004), 1539–1556 | MR | Zbl

[9] Sergienko I. V., Galba E. F., Deineka B. C., “Razlozhenie v ryady vzveshennykh psevdoobratnykh matrits i iteratsionnye metody dlya vychisleniya vzveshennykh psevdoobratnykh matrits i vzveshennykh normalnykh psevdoreshenii”, Kibernetika i sistemnyi analiz, 2006, no. 3, 32–62 | Zbl

[10] Galba E. F., Deineka B. C., Sergienko I. V., “Razlozheniya i mnogochlennye predelnye predstavleniya vzveshennykh psevdoobratnykh matrits”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 747–766 | MR | Zbl

[11] Sergienko I. V., Galba E. F., Deineka B. C., “Razlozhenie vzveshennykh psevdoobratnykh matrits s polozhitelno-opredelennymi vesami v matrichnye stepennye proizvedeniya i iteratsionnye metody”, Kibernetika i sistemnyi analiz, 2007, no. 1, 45–64 | MR | Zbl

[12] Khimich A. N., Nikolaevskaya E. A., “Reshenie zadachi vzveshennykh naimenshikh kvadratov s priblizhenno zadannymi iskhodnymi dannymi”, Sb. nauchn. trudov, Teoriya optimalnykh reshenii, 7, In-t kibernetiki im. V. M. Glushkova NAN Ukrainy, Kiev, 2008, 132–139

[13] Censor Y., Elfving T., “Block-iterative algorithms with diagonally skaled oblique projections for the linear feasibility problem”, SIAM J. Matrix. Anal., 24:1 (2002), 40–58 | DOI | MR | Zbl

[14] Censor Y., Elfving T., “Iterative algorithms with seminorm-induced oblique projections”, Abstr. Appl. Anal., 2003, no. 7, 387–406 | DOI | MR | Zbl

[15] Galba E. F., Deineka B. C., Sergienko I. V., “Vzveshennye psevdoobratnye matritsy i vzveshennye normalnye psevdoresheniya s vyrozhdennymi vesami”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1347–1363 | MR | Zbl

[16] Moore E. H., “On the reciprocal of the general algebraic matrix”, Abstract, Bull. Amer. Math. Soc., 26 (1920), 394–395

[17] Penrose R., “A generalized inverse for matrices”, Proc. Cambridge Phil. Soc., 51:3 (1955), 406–413 | DOI | MR | Zbl

[18] Albert A., Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Nauka, M., 1975 | MR

[19] Galba E. F., Molchanov I. N., Skopetskii V. V., “Iteratsionnye metody dlya vychisleniya vzveshennoi psevdoobratnoi matritsy s vyrozhdennymi vesami”, Kibernetika i sistemnyi analiz, 1999, no. 5, 150–169 | MR | Zbl

[20] Galba E. F., Deineka B. C., Sergienko I. V., “Predelnye predstavleniya vzveshennykh psevdoobratnykh matrits s vyrozhdennymi vesami i regulyarizatsiya zadach”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 1928–1946 | MR | Zbl

[21] Galba E. F., “Iteratsionnye metody dlya vychisleniya vzveshennogo normalnogo psevdoresheniya s vyrozhdennymi vesami”, Zh. vychisl. matem. i matem. fiz., 39:6 (1999), 882–896 | MR | Zbl

[22] Lancaster P., Rozsa P., “Eigenvectors of $H$-self-adjoint matrices”, Z. Angew. Math. und Mech., 64:9 (1984), 439–441 | DOI | MR | Zbl

[23] Ikramov Kh. D., “Ob algebraicheskikh svoistvakh klassov psevdoperestanovochnykh i $H$-samosopryazhennykh matrits”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 155–169 | MR

[24] Ikramov Kh. D., Zadachi lineinoi algebry s obobschennymi simmetriyami i chislennye algoritmy ikh resheniya, Dis. ...dokt. fiz.-matem. nauk, MGU, M., 1991

[25] Ikramov Kh. D., Zadachnik po lineinoi algebre, Nauka, M., 1975 | MR

[26] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[27] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[28] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR

[29] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[30] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[31] Arkharov E. V., Shafiev R. A., “Metody regulyarizatsii zadachi svyazannogo psevdoobrascheniya s priblizhennymi dannymi”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 347–353 | MR | Zbl