@article{ZVMMF_2012_52_11_a9,
author = {S. A. Nazarov},
title = {Asymptotic behavior of the eigenvalues of the {Steklov} problem on a junction of domains of different limiting dimensions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2033--2049},
year = {2012},
volume = {52},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 2033 EP - 2049 VL - 52 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/ LA - ru ID - ZVMMF_2012_52_11_a9 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 2033-2049 %V 52 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/ %G ru %F ZVMMF_2012_52_11_a9
S. A. Nazarov. Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2033-2049. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/
[1] Nazarov S. A., “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sbornik, 199:12 (2008), 53–78 | DOI | MR | Zbl
[2] Nazarov S. A., “Tochechnyi spektr zadachi o volnakh na poverkhnosti zhidkosti v peresekayuschikhsya kanalakh”, Zapiski nauchn. seminarov peterburg. otd. matem. in-ta RAN, 380, 2010, 110–131
[3] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR
[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[5] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, 1”, Tr. seminara im. I. G. Petrovskogo, 18, Izd-vo MGU, M., 1995, 3–78 | MR
[6] Nazarov S. A., “Ellipticheskie zadachi na gibridnykh oblastyakh”, Funktsionalnyi analiz i ego prilozheniya, 38:4 (2004), 55–72 | MR | Zbl
[7] Sanchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR | Zbl
[8] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Birkhauser Verlag, Basel, 2000
[9] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl
[10] Lobo M., Pérez M., “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331 (2003), 303–317 | DOI | Zbl
[11] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR
[12] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[13] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[14] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967
[15] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[16] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, 2”, Tr. seminara im. I. G. Petrovskogo, 20, Izd-vo MGU, M., 1997, 155–195 | MR
[17] Nazarov S. A., “Asimptoticheskii analiz i modelirovanie sochleneniya massivnogo tela s tonkimi sterzhnyami”, Tr. seminara im. I. G. Petrovskogo, 24, Izd-vo MGU, M., 2004, 95–214
[18] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl