Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2033-2049 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of eigenvalues and eigenfunctions of the Steklov problem on a junction of rectangles: a thin rectangle with a width of $\varepsilon>0$ and a rectangle with unit dimensions, is studied. In addition to asymptotic formulas for the main series of eigenvalues (in the low-frequency region), other series with stable characteristics are found in the medium-frequency region and explicit formulas for the correction terms are derived. In the framework of the linear theory of surface waves, the results of this work describe the effect of wave localization in shallow water.
@article{ZVMMF_2012_52_11_a9,
     author = {S. A. Nazarov},
     title = {Asymptotic behavior of the eigenvalues of the {Steklov} problem on a junction of domains of different limiting dimensions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2033--2049},
     year = {2012},
     volume = {52},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2033
EP  - 2049
VL  - 52
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/
LA  - ru
ID  - ZVMMF_2012_52_11_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2033-2049
%V 52
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/
%G ru
%F ZVMMF_2012_52_11_a9
S. A. Nazarov. Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2033-2049. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a9/

[1] Nazarov S. A., “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Matem. sbornik, 199:12 (2008), 53–78 | DOI | MR | Zbl

[2] Nazarov S. A., “Tochechnyi spektr zadachi o volnakh na poverkhnosti zhidkosti v peresekayuschikhsya kanalakh”, Zapiski nauchn. seminarov peterburg. otd. matem. in-ta RAN, 380, 2010, 110–131

[3] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, 1”, Tr. seminara im. I. G. Petrovskogo, 18, Izd-vo MGU, M., 1995, 3–78 | MR

[6] Nazarov S. A., “Ellipticheskie zadachi na gibridnykh oblastyakh”, Funktsionalnyi analiz i ego prilozheniya, 38:4 (2004), 55–72 | MR | Zbl

[7] Sanchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR | Zbl

[8] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Birkhauser Verlag, Basel, 2000

[9] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl

[10] Lobo M., Pérez M., “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331 (2003), 303–317 | DOI | Zbl

[11] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[12] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[13] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[14] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[15] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[16] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, 2”, Tr. seminara im. I. G. Petrovskogo, 20, Izd-vo MGU, M., 1997, 155–195 | MR

[17] Nazarov S. A., “Asimptoticheskii analiz i modelirovanie sochleneniya massivnogo tela s tonkimi sterzhnyami”, Tr. seminara im. I. G. Petrovskogo, 24, Izd-vo MGU, M., 2004, 95–214

[18] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl