Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2004-2022
Voir la notice de l'article provenant de la source Math-Net.Ru
The phenomenon is studied of reducing the order of convergence by one in some classes of variable step size Nordsieck formulas as applied to the solution of the initial value problem for a first-order ordinary differential equation. This phenomenon is caused by the fact that the convergence of fixed step size Nordsieck methods requires weaker quasi-consistency than classical Runge–Kutta formulas, which require consistency up to a certain order. In other words, quasi-consistent Nordsieck methods on fixed step size meshes have a higher order of convergence than on variable step size ones. This fact creates certain difficulties in the automatic error control of these methods. It is shown how quasi-consistent methods can be modified so that the high order of convergence is preserved on variable step size meshes. The regular techniques proposed can be applied to any quasi-consistent Nordsieck methods. Specifically, it is shown how this technique performs for Nordsieck methods based on the multistep Adams–Moulton formulas, which are the most popular quasi-consistent methods. The theoretical conclusions of this paper are confirmed by the numerical results obtained for a test problem with a known solution.
@article{ZVMMF_2012_52_11_a7,
author = {G. Yu. Kulikov},
title = {Solving the order reduction phenomenon in variable step size quasi-consistent {Nordsieck} methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2004--2022},
publisher = {mathdoc},
volume = {52},
number = {11},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a7/}
}
TY - JOUR AU - G. Yu. Kulikov TI - Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 2004 EP - 2022 VL - 52 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a7/ LA - ru ID - ZVMMF_2012_52_11_a7 ER -
%0 Journal Article %A G. Yu. Kulikov %T Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 2004-2022 %V 52 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a7/ %G ru %F ZVMMF_2012_52_11_a7
G. Yu. Kulikov. Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2004-2022. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a7/