Direct method for the design of optimal three-dimensional aerodynamic shapes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1976-1982 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A direct optimization method for a broad class of three-dimensional aerodynamic shapes based on the approximation of the desired geometry by Bernstein–Bézier surfaces is developed. The high efficiency of the method is demonstrated by applying it to the design of an optimal supersonic section of an axisymmetric maximum-thrust de Laval nozzle. The method is also tested as applied to the design of a three-dimensional supersonic nozzle section in a dense multi-nozzle setup. In addition to three-dimensional supersonic nozzle sections with a circular throat, nozzles with a varying throat shape are considered. The results suggest that the method can be applied to various problems of 3D shape optimization.
@article{ZVMMF_2012_52_11_a5,
     author = {N. P. Isakova and A. A. Kraiko and K. S. P'yankov},
     title = {Direct method for the design of optimal three-dimensional aerodynamic shapes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1976--1982},
     year = {2012},
     volume = {52},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a5/}
}
TY  - JOUR
AU  - N. P. Isakova
AU  - A. A. Kraiko
AU  - K. S. P'yankov
TI  - Direct method for the design of optimal three-dimensional aerodynamic shapes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1976
EP  - 1982
VL  - 52
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a5/
LA  - ru
ID  - ZVMMF_2012_52_11_a5
ER  - 
%0 Journal Article
%A N. P. Isakova
%A A. A. Kraiko
%A K. S. P'yankov
%T Direct method for the design of optimal three-dimensional aerodynamic shapes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1976-1982
%V 52
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a5/
%G ru
%F ZVMMF_2012_52_11_a5
N. P. Isakova; A. A. Kraiko; K. S. P'yankov. Direct method for the design of optimal three-dimensional aerodynamic shapes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1976-1982. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a5/

[1] Kraiko A. A., Pyankov K. S., “Effektivnye pryamye metody v zadachakh postroeniya optimalnykh aerodinamicheskikh form”, Zh. vychisl. matem. i matem. fiz., 50:9 (2010), 1624–1631 | MR | Zbl

[2] Shmyglevskii Yu. D., Analiticheskie issledovaniya dinamiki gaza i zhidkosti, Editorial URSS, M., 1999

[3] Kraiko A. N., Variatsionnye zadachi gazovoi dinamiki, Nauka, M., 1979 | MR

[4] Wang X., Damodaran M., “Aerodynamic shape optimization using computational fluid dynamics and parallel simulated annealing algorithms”, AIAA J., 39:8 (2001), 1500–1508 | DOI

[5] Wang X., Damodaran M., “Optimal three-dimansional nozzle shape design using CFD and parallel simulated annealing”, AIAA J. Propulsion and Power, 18:1 (2002), 217–221 | DOI

[6] Reihmer J., Gulhan A., “Design of a scramjet nozzle streamline tracing technique and reference temperature methode”, 7th Aerodynamics Symposium on Space Vehicles (2011, Brügge, Belgien)

[7] Borisov V. M., Mikhailov I. E., “Ob optimizatsii sverkhzvukovykh chastei prostranstvennykh sopel”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 517–519 | MR | Zbl

[8] Kolgan V. P., “Ispolzovanie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. Zap. TsAGI, 3:6 (1972), 68–77

[9] Tillyaeva N. I., “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uch. Zap. TsAGI, 17:2 (1986), 18–26