On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1959-1975 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the analysis of the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method and the efficiency of various techniques for accelerating the final stage of this method.
@article{ZVMMF_2012_52_11_a4,
     author = {A. F. Izmailov and E. I. Uskov},
     title = {On the influence of the critical {Lagrange} multipliers on the convergence rate of the multiplier method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1959--1975},
     year = {2012},
     volume = {52},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a4/}
}
TY  - JOUR
AU  - A. F. Izmailov
AU  - E. I. Uskov
TI  - On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1959
EP  - 1975
VL  - 52
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a4/
LA  - ru
ID  - ZVMMF_2012_52_11_a4
ER  - 
%0 Journal Article
%A A. F. Izmailov
%A E. I. Uskov
%T On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1959-1975
%V 52
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a4/
%G ru
%F ZVMMF_2012_52_11_a4
A. F. Izmailov; E. I. Uskov. On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1959-1975. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a4/

[1] Izmailov A. F., Solodov M. V., “Stabilized SQP revisited”, Math. Program., 122:1 (2012), 93–120 | DOI | MR

[2] Izmailov A. F., “Ob analiticheskoi i vychislitelnoi ustoichivosti kriticheskikh mnozhitelei Lagranzha”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 966–982 | MR | Zbl

[3] Izmailov A. F., Solodov M. V., “Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints”, Comput. Optimizat. Appl., 42:2 (2009), 231–264 | DOI | MR | Zbl

[4] Hestenes M. R., “Multiplier and gradient methods”, J. Optimizat. Theory Appl., 4 (1969), 303–320 | DOI | MR | Zbl

[5] Powell M. J. D., “A method for nonlinear constraints in minimization problems”, Optimization, Academic Press, New York, 1969, 283–298 | MR

[6] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[7] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, 2-e izd., pererab. i dop., Fizmatlit, M., 2008

[8] LANCELOT http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml

[9] ALGENCAN http://www.ime.usp.br/ẽgbirgin/tango/

[10] Birgin E. G., Martinez J. M., “Improving ultimate convergence of an augmented Lagrangian method”, Optimizat. Meth. Software, 23:2 (2008), 177–195 | DOI | MR | Zbl

[11] Andreani R., Birgin E. G., Martinez J. M., Schuverdt M. L., “On augmented Lagrangian methods with general lower-level constraints”, SIAM J. Optimizat., 18:4 (2007), 1286–1309 | DOI | MR | Zbl

[12] Andreani R., Haeser G., Schuverdt M. L., Silva P. J. S., “A relaxed constant positive linear dependence constraint qualification and applications”, Math. Program., 2011 | MR

[13] Izmailov A. F., Solodov M. V., Uskov E. I., “Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints”, SIAM J. Optim., Accepted for publication

[14] Fernández D., Solodov M. V., “Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition”, SIAM J. Optim., 22 (2012), 384–407 | DOI | Zbl

[15] Izmailov A. F., Solodov M. V., “On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions”, Math. Program., 117:1–2 (2009), 271–304 | DOI | MR | Zbl

[16] Izmailov A. F., Solodov M. V., “On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers”, Math. Program., 128:2 (2011), 231–257 | DOI | MR

[17] Izmailov A. F., “O predelnykh svoistvakh dvoistvennykh traektorii metoda mnozhitelei Lagranzha”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 3–23 | MR | Zbl

[18] Wright S. J., “Superlinear convergence of a stabilized SQP method to a degenerate solution”, Comput. Optimizat. Appl., 11 (1998), 253–275 | DOI | MR | Zbl

[19] Golishnikov M. M., Izmailov A. F., “Nyutonovskie metody dlya zadach uslovnoi optimizatsii s neregulyarnymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1369–1391 | MR

[20] Birgin E. G., Fernandez D., Martinez J. M., “On the boundedness of penalty parameters in an augmented Lagrangian method with lower level constraints”, Optimizat. Meth. Software, 27 (2012), 1001–1024 | DOI | MR | Zbl

[21] Birgin E. G., Martinez J. M., “Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization”, Comput. Optimizat. Appl., 51:3 (2012), 941–965 | DOI | MR | Zbl

[22] DEGEN http://w3.impa.br/\allowbreakõptim/DEGEN_collection.zip

[23] The HSL Mathematical Software Library http://www.hsl.rl.ac.uk

[24] MacMPEC http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC

[25] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[26] Dolan E., Moré J., “Benchmarking optimization software with performance profiles”, Math. Program., 91:2 (2002), 201–213 | DOI | MR | Zbl