Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1952-1958 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-variable functions $f(x,y)$ from the class $L_2=L_2((a,b)\times(c,d);p(x)q(y))$ with the weight $p(x)q(y)$ and the norm $$ ||f||=\sqrt{\int_a^b\int_c^dp(x)q(x)f^2(x,y)dx\,dy} $$ are approximated by an orthonormal system of orthogonal $P_n(x)Q_n(y)$, $n, m=0, 1,\dots$, with weights $p(x)$ and $q(y)$. Let $$ E_N(f)=\inf_{P_N}||f-P_N|| $$ denote the best approximation of $f\in L_2$ algebraic polynomials of the form \begin{gather*} P_N(x,y)=\sum_{0<n,m<N}a_{m,n}x^ny^m,\\ P_1(x,y)=\mathrm{const}. \end{gather*} Consider a double Fourier series of $f\in L_2$ in the polynomials $P_n(x)Q_m(y)$, $n, m=0, 1,\dots$, and its “hyperbolic” partial sums \begin{gather*} S_1(f; x,y)=c_{0,0}(f)P_0(x)Q_0(y),\\ S_N(f; x,y)=\sum_{0<n,m<N}c_{n,m}(f)P_n(x)Q_m(y),\qquad N=2,3,\dots. \end{gather*} A generalized shift operator $F_h$ and a $k$th-order generalized modulus of continuity $\Omega_k(A,h)$ of a function $f\in L_2$ are used to prove the following sharp estimate for the convergence rate of the approximation: \begin{gather*} E_N(f)\leqslant(1-(1-h)^{2\sqrt{N}})^{-k}\,\Omega_k(f; h), \qquad h\in(0,1),\\ N=4,5,\dots;\qquad k=1,2,\dots. \end{gather*} Moreover, for every fixed $N=4,9,16,\dots$, the constant on the right-hand side of this inequality is cannot be reduced.
@article{ZVMMF_2012_52_11_a3,
     author = {V. A. Abilov and M. K. Kerimov},
     title = {Sharp estimates for the convergence rate of {\textquotedblleft}hyperbolic{\textquotedblright} partial sums of double fourier series in orthogonal polynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1952--1958},
     year = {2012},
     volume = {52},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - M. K. Kerimov
TI  - Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1952
EP  - 1958
VL  - 52
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/
LA  - ru
ID  - ZVMMF_2012_52_11_a3
ER  - 
%0 Journal Article
%A V. A. Abilov
%A M. K. Kerimov
%T Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1952-1958
%V 52
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/
%G ru
%F ZVMMF_2012_52_11_a3
V. A. Abilov; M. K. Kerimov. Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1952-1958. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/

[1] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963 | MR

[2] Watson G. N., A treatise on the theory of Bessel functions, Second edition, Cambridge University Press, Cambridge, 1962 ; Vatson G. N., Teoriya besselevykh funktsii, Perev. s angl. B. C. Bermana, v. I, II, Izd-vo inostr. liter., M., 1949 | MR

[3] Abilov V. A., Kerimov M. K., “Nekotorye otsenki pogreshnosti smeshannykh ryadov Fure–Besselya funktsii dvukh peremennykh”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1545–1565 | MR

[4] Abilov V. A., Abilov M. V., Kerimov M. K., “Nekotorye voprosy razlozheniya funktsii v dvoinye ryady Fure–Besselya”, Zh. vychisl. matem. i matem. fiz., 44:12 (2004), 2128–2149 | MR | Zbl

[5] Rafilson S. Z., “Nailuchshee priblizhenie funktsii v metrikakh $L_{p(x)}^2$ algebraicheskimi mnogochlenami i koeffitsienty Fure po ortogonalnym mnogochlenam”, Vestnik Lening. gos. un-ta. Seriya mekhan. i matem., 1969, no. 7, 68–79

[6] Kulikova T. Yu., Priblizhenie funktsii v metrike $L_2$ s vesom, Depon. v VINITI. Moskva, No 3074-V.98, 1998, 66 pp.

[7] Suetin P. K., Ortogonalnye mnogochleny po dvum peremennym, Nauka, M., 1988 | MR | Zbl

[8] Abilov V. A., Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Izv. vyssh. uchebn. zavedenii. Matematika, 1997, no. 3, 40–43 | MR

[9] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skhodimosti ryadov Fure po ortogonalnym mnogochlenam v prostranstve $L_2((a,b),p(x))$”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 966–980 | MR | Zbl

[10] Abilov V. A., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti dvoinykh ryadov Fure po ortogonalnym mnogochlenam v prostranstve $L_2((a,b)\times(c,d);p(x)q(y))$”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1364–1368 | MR | Zbl