Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1952-1958

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-variable functions $f(x,y)$ from the class $L_2=L_2((a,b)\times(c,d);p(x)q(y))$ with the weight $p(x)q(y)$ and the norm $$ ||f||=\sqrt{\int_a^b\int_c^dp(x)q(x)f^2(x,y)dx\,dy} $$ are approximated by an orthonormal system of orthogonal $P_n(x)Q_n(y)$, $n, m=0, 1,\dots$, with weights $p(x)$ and $q(y)$. Let $$ E_N(f)=\inf_{P_N}||f-P_N|| $$ denote the best approximation of $f\in L_2$ algebraic polynomials of the form \begin{gather*} P_N(x,y)=\sum_{0,m}a_{m,n}x^ny^m,\\ P_1(x,y)=\mathrm{const}. \end{gather*} Consider a double Fourier series of $f\in L_2$ in the polynomials $P_n(x)Q_m(y)$, $n, m=0, 1,\dots$, and its “hyperbolic” partial sums \begin{gather*} S_1(f; x,y)=c_{0,0}(f)P_0(x)Q_0(y),\\ S_N(f; x,y)=\sum_{0,m}c_{n,m}(f)P_n(x)Q_m(y),\qquad N=2,3,\dots. \end{gather*} A generalized shift operator $F_h$ and a $k$th-order generalized modulus of continuity $\Omega_k(A,h)$ of a function $f\in L_2$ are used to prove the following sharp estimate for the convergence rate of the approximation: \begin{gather*} E_N(f)\leqslant(1-(1-h)^{2\sqrt{N}})^{-k}\,\Omega_k(f; h), \qquad h\in(0,1),\\ N=4,5,\dots;\qquad k=1,2,\dots. \end{gather*} Moreover, for every fixed $N=4,9,16,\dots$, the constant on the right-hand side of this inequality is cannot be reduced.
@article{ZVMMF_2012_52_11_a3,
     author = {V. A. Abilov and M. K. Kerimov},
     title = {Sharp estimates for the convergence rate of {\textquotedblleft}hyperbolic{\textquotedblright} partial sums of double fourier series in orthogonal polynomials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1952--1958},
     publisher = {mathdoc},
     volume = {52},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - M. K. Kerimov
TI  - Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1952
EP  - 1958
VL  - 52
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/
LA  - ru
ID  - ZVMMF_2012_52_11_a3
ER  - 
%0 Journal Article
%A V. A. Abilov
%A M. K. Kerimov
%T Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1952-1958
%V 52
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/
%G ru
%F ZVMMF_2012_52_11_a3
V. A. Abilov; M. K. Kerimov. Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 1952-1958. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a3/