Численное исследование локализованного возмущения температуры в модели фазового поля в случае слияния свободных границ
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2080-2092 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_11_a13,
     author = {V. G. Danilov and V. Yu. Rudnev},
     title = {{\CYRCH}{\cyri}{\cyrs}{\cyrl}{\cyre}{\cyrn}{\cyrn}{\cyro}{\cyre} {\cyri}{\cyrs}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre} {\cyrl}{\cyro}{\cyrk}{\cyra}{\cyrl}{\cyri}{\cyrz}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrv}{\cyro}{\cyrz}{\cyrm}{\cyru}{\cyrshch}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrt}{\cyre}{\cyrm}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyru}{\cyrr}{\cyrery} {\cyrv} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri} {\cyrf}{\cyra}{\cyrz}{\cyro}{\cyrv}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyro}{\cyrl}{\cyrya} {\cyrv} {\cyrs}{\cyrl}{\cyru}{\cyrch}{\cyra}{\cyre} {\cyrs}{\cyrl}{\cyri}{\cyrya}{\cyrn}{\cyri}{\cyrya} {\cyrs}{\cyrv}{\cyro}{\cyrb}{\cyro}{\cyrd}{\cyrn}{\cyrery}{\cyrh} {\cyrg}{\cyrr}{\cyra}{\cyrn}{\cyri}{\cyrc}},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2080--2092},
     year = {2012},
     volume = {52},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a13/}
}
TY  - JOUR
AU  - V. G. Danilov
AU  - V. Yu. Rudnev
TI  - Численное исследование локализованного возмущения температуры в модели фазового поля в случае слияния свободных границ
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 2080
EP  - 2092
VL  - 52
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a13/
LA  - ru
ID  - ZVMMF_2012_52_11_a13
ER  - 
%0 Journal Article
%A V. G. Danilov
%A V. Yu. Rudnev
%T Численное исследование локализованного возмущения температуры в модели фазового поля в случае слияния свободных границ
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 2080-2092
%V 52
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a13/
%G ru
%F ZVMMF_2012_52_11_a13
V. G. Danilov; V. Yu. Rudnev. Численное исследование локализованного возмущения температуры в модели фазового поля в случае слияния свободных границ. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 11, pp. 2080-2092. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_11_a13/

[1] Gribbs J. W., Collected Works, Yale University Press, New Haven, 1948

[2] Chalmers B., Principles of solidification, Krieger, N. Y., 1964

[3] Elliot C. M., Ockendon J. R., Weak and variational methods for moving boundary problems, Pitman, Boston, 1982 | MR | Zbl

[4] Holunbery P. C., Halperin B. I., “Theory of dynamic critical phenomena”, Rev. Modern Phys., 49:3 (1977), 435–476 | DOI

[5] Caginalp G., “An analysis of a phase field model of a free boundary”, Arch. Rat. Mech. Anal., 92 (1986), 205–245 | DOI | MR | Zbl

[6] Caginalp G., In applications of field phase theory to statistical mech., Lect. Notes in Physics, 216, Springer, Berlin, 216 pp.

[7] Danilov V. G., Omelyanov G. A., Radkevich E. V., “Asimptoticheskoe reshenie sistemy fazovogo polya i modifitsirovannoi zadachi Stefana”, Differents. ur-niya, 31:3 (1995), 483–491 | MR | Zbl

[8] Danilov V. G., “Weak asymptotic solution of phase-field system in the case of confluence of free boundaries in Stefan problem with undercooling”, Euro. J. Appl. Math., 18 (2007), 537–569 | DOI | MR | Zbl

[9] Meirmanov A., Zaltzman B., “Global in time solution to the Hele–Shaw problem with a change of topology”, Euro. J. Appl. Math., 13 (2002), 431–447 | DOI | MR | Zbl

[10] Plotnikov P. I., Starovoitov V. N., “Stefan problem as the limit of the phase field system”, Differential Equations, 29 (1993), 461–471 | MR | Zbl

[11] Samarskii A. A., Nikolaev E. S., Reshenie setochnykh uravnenii, Nauka, M., 1978 | MR

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1971 | Zbl

[13] Samarskii A. A., Vvedenie v chislennye metody, Nauka, M., 1971 | MR | Zbl

[14] Omel'yanov G. A., Rudnev V. Yu., “Interaction of free boundaries in the modified Stefan problem”, Nonlinear Phenomena in Complex Systems, 7:3 (2004), 227–237 | MR