@article{ZVMMF_2012_52_10_a8,
author = {A. M. Blokhin and D. L. Tkachev},
title = {Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1866--1882},
year = {2012},
volume = {52},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/}
}
TY - JOUR AU - A. M. Blokhin AU - D. L. Tkachev TI - Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1866 EP - 1882 VL - 52 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/ LA - ru ID - ZVMMF_2012_52_10_a8 ER -
%0 Journal Article %A A. M. Blokhin %A D. L. Tkachev %T Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1866-1882 %V 52 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/ %G ru %F ZVMMF_2012_52_10_a8
A. M. Blokhin; D. L. Tkachev. Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1866-1882. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/
[1] Selberherr S., Analysis and simulation of semiconductor devices, Springer, Wien–New York, 1984
[2] Hänsch W., The drift diffusion equations and its applications in MESFET modeling, Springer, Wien, 1991 | Zbl
[3] Markovich P., Ringhofer C. A., Schmeister C., Semiconductor equations, Springer, Wien, 1990 | MR
[4] Chen D., Kan E. C., Ravaioli U., Shu C.-W., Dutton R., “An improved energy-transport model including nonparabolicity and non-maxwellian distribution effects”, IEEE on Electron Device Letters, 13 (1992), 26–28 | DOI
[5] Lyumkis E., Polsky B., Shir A., Visocky P., “Transient semiconductor device simulation including energy balance equation”, COMPEL, 11 (1992), 311–325 | DOI | Zbl
[6] Abdallah N. B., Degond P., “On a hierarchy of macroscopic models for semiconductors”, J. Math. Phys., 37 (1996), 3308–3333 | DOI | MR
[7] Anile A. M., Romano V., “Hydrodynamical modeling of charge carrier transport in semiconductors”, MECCANICA, 35 (2000), 249–296 | DOI | Zbl
[8] Anile A. M., Mascali G., Romano V., Lecture Notes in mathematics, Springer, New York, 2003 | MR
[9] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl
[10] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl
[11] Blokhin A. M., Tkachev D. L., “Local-in-time well-posedness of regularized mathematical model for silicon MESFET”, ZAMP, 61 (2010), 849–864 | DOI | MR | Zbl
[12] Blokhin A. M., Bushmanov R. S., Romano V., “Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 2169–2191 | DOI | MR | Zbl
[13] Blokhin A. M., Bushmanov R. S., Rudometova A. S., Romano V., “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl
[14] Romano V., “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl
[15] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matem. modelirovanie, 21:4 (2009), 15–34 | MR | Zbl
[16] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D simulation of a silicon MESFET with a hydrodynamical model based on the maximum entropy principle”, SIAM J. Sci. Comput., 31:3 (2009), 2015–2046 | DOI | MR | Zbl
[17] Babenko K. I., Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2002
[18] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[19] Hilderbrandt S., Widman K.-O., “Some regularity results for quasilinear elliptic systems of second order”, Math. Z., 142 (1975), 67–86 | DOI | MR
[20] Lions J. L., Magenes E., Non-homogeneous Ioundary Malue Zroblems and Fpplications, Springer, New York, 1972
[21] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR
[22] Demidenko G. V., Uspenskii S. V., Teoremy vlozheniya i ikh prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984
[23] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[24] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer, Berlin, 1977 | MR | Zbl
[25] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[26] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991
[27] Frehse J., “A discontinuous solution of a mildly nonlinear elliptic system”, Math. Z., 134 (1973), 229–230 | DOI | MR | Zbl
[28] Blokhin A. M., Tkachev D. L., “Representation of the solution to a model problem in semiconductor physics”, J. Math. Anal. Appl., 341 (2008), 1468–1475 | DOI | MR | Zbl
[29] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Izd-vo Gostekhizdat, M.–L., 1951
[30] Kondrashov V. I., “O nekotorykh svoistvakh funktsii iz prostranstva $L^p$”, Dokl. AN SSSR, 48 (1945), 563–566
[31] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[32] Nirenberg L., “Nekotorye voprosy teorii lineinykh i nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, UMH, 18:4 (1963), 101–118 | MR | Zbl
[33] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984
[34] Schulz F., Regularity theory for quasilinear elliptic systems and Monge–Ampere equations in two dimensions, Lecture Notes in Math., 1445, Springer, 1990 | MR | Zbl