Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1866-1882
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for an elliptic system of equations is studied that arises in the analysis of a new hydrodynamic model describing charge transport in a planar semiconductor MESFET (metal semiconductor field effect transistor). The problem has a number of features, specifically, the equations of the system involve squared components of the gradients of the unknown functions; the boundary conditions are of a mixed character, i.e., Dirichlet and Neumann conditions are set on different portions of the boundary; and the boundary of the domain is a nonsmooth curve, namely, a rectangle. Under a certain optimal condition, the $C^{1,\alpha}$-regularity of a weakened solution of the problem is justified and its existence is proved, while its uniqueness is shown under additional constraints. The results are used to justify the stabilization method as applied to finding approximate stationary solutions of the hydrodynamic model.
@article{ZVMMF_2012_52_10_a8,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1866--1882},
     year = {2012},
     volume = {52},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1866
EP  - 1882
VL  - 52
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/
LA  - ru
ID  - ZVMMF_2012_52_10_a8
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1866-1882
%V 52
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/
%G ru
%F ZVMMF_2012_52_10_a8
A. M. Blokhin; D. L. Tkachev. Regularity of the solution and well-posedness of a mixed problem for an elliptic system with quadratic nonlinearity in gradients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1866-1882. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a8/

[1] Selberherr S., Analysis and simulation of semiconductor devices, Springer, Wien–New York, 1984

[2] Hänsch W., The drift diffusion equations and its applications in MESFET modeling, Springer, Wien, 1991 | Zbl

[3] Markovich P., Ringhofer C. A., Schmeister C., Semiconductor equations, Springer, Wien, 1990 | MR

[4] Chen D., Kan E. C., Ravaioli U., Shu C.-W., Dutton R., “An improved energy-transport model including nonparabolicity and non-maxwellian distribution effects”, IEEE on Electron Device Letters, 13 (1992), 26–28 | DOI

[5] Lyumkis E., Polsky B., Shir A., Visocky P., “Transient semiconductor device simulation including energy balance equation”, COMPEL, 11 (1992), 311–325 | DOI | Zbl

[6] Abdallah N. B., Degond P., “On a hierarchy of macroscopic models for semiconductors”, J. Math. Phys., 37 (1996), 3308–3333 | DOI | MR

[7] Anile A. M., Romano V., “Hydrodynamical modeling of charge carrier transport in semiconductors”, MECCANICA, 35 (2000), 249–296 | DOI | Zbl

[8] Anile A. M., Mascali G., Romano V., Lecture Notes in mathematics, Springer, New York, 2003 | MR

[9] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl

[10] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl

[11] Blokhin A. M., Tkachev D. L., “Local-in-time well-posedness of regularized mathematical model for silicon MESFET”, ZAMP, 61 (2010), 849–864 | DOI | MR | Zbl

[12] Blokhin A. M., Bushmanov R. S., Romano V., “Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 2169–2191 | DOI | MR | Zbl

[13] Blokhin A. M., Bushmanov R. S., Rudometova A. S., Romano V., “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl

[14] Romano V., “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl

[15] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matem. modelirovanie, 21:4 (2009), 15–34 | MR | Zbl

[16] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D simulation of a silicon MESFET with a hydrodynamical model based on the maximum entropy principle”, SIAM J. Sci. Comput., 31:3 (2009), 2015–2046 | DOI | MR | Zbl

[17] Babenko K. I., Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2002

[18] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[19] Hilderbrandt S., Widman K.-O., “Some regularity results for quasilinear elliptic systems of second order”, Math. Z., 142 (1975), 67–86 | DOI | MR

[20] Lions J. L., Magenes E., Non-homogeneous Ioundary Malue Zroblems and Fpplications, Springer, New York, 1972

[21] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[22] Demidenko G. V., Uspenskii S. V., Teoremy vlozheniya i ikh prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984

[23] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[24] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer, Berlin, 1977 | MR | Zbl

[25] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[26] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[27] Frehse J., “A discontinuous solution of a mildly nonlinear elliptic system”, Math. Z., 134 (1973), 229–230 | DOI | MR | Zbl

[28] Blokhin A. M., Tkachev D. L., “Representation of the solution to a model problem in semiconductor physics”, J. Math. Anal. Appl., 341 (2008), 1468–1475 | DOI | MR | Zbl

[29] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Izd-vo Gostekhizdat, M.–L., 1951

[30] Kondrashov V. I., “O nekotorykh svoistvakh funktsii iz prostranstva $L^p$”, Dokl. AN SSSR, 48 (1945), 563–566

[31] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[32] Nirenberg L., “Nekotorye voprosy teorii lineinykh i nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, UMH, 18:4 (1963), 101–118 | MR | Zbl

[33] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[34] Schulz F., Regularity theory for quasilinear elliptic systems and Monge–Ampere equations in two dimensions, Lecture Notes in Math., 1445, Springer, 1990 | MR | Zbl