On the initial boundary value problem for a nonlinear nonhomogeneous equation of Sobolev type
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1855-1865
Voir la notice de l'article provenant de la source Math-Net.Ru
The initial boundary value problem for a nonlinear nonhomogeneous equation of Sobolev type used for modeling nonstationary processes in semiconductors is examined. It is proved that this problem is uniquely solvable at least locally in time. Sufficient conditions for the problem to be solvable globally in time are found, as well as sufficient conditions for the local (but not global) solvability. In the case of only local solvability, upper and lower estimates for the time when a solution exists are determined in the form of either explicit or quadrature formulas.
@article{ZVMMF_2012_52_10_a7,
author = {A. I. Aristov},
title = {On the initial boundary value problem for a nonlinear nonhomogeneous equation of {Sobolev} type},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1855--1865},
publisher = {mathdoc},
volume = {52},
number = {10},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a7/}
}
TY - JOUR AU - A. I. Aristov TI - On the initial boundary value problem for a nonlinear nonhomogeneous equation of Sobolev type JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1855 EP - 1865 VL - 52 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a7/ LA - ru ID - ZVMMF_2012_52_10_a7 ER -
%0 Journal Article %A A. I. Aristov %T On the initial boundary value problem for a nonlinear nonhomogeneous equation of Sobolev type %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1855-1865 %V 52 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a7/ %G ru %F ZVMMF_2012_52_10_a7
A. I. Aristov. On the initial boundary value problem for a nonlinear nonhomogeneous equation of Sobolev type. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1855-1865. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a7/