Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1812-1846 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on $\mathbb{R}_+$, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer–Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.
@article{ZVMMF_2012_52_10_a5,
     author = {T. A. Belkina and N. B. Konyukhova and S. V. Kurochkin},
     title = {Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: {Analysis} and numerical solution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1812--1846},
     year = {2012},
     volume = {52},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a5/}
}
TY  - JOUR
AU  - T. A. Belkina
AU  - N. B. Konyukhova
AU  - S. V. Kurochkin
TI  - Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1812
EP  - 1846
VL  - 52
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a5/
LA  - ru
ID  - ZVMMF_2012_52_10_a5
ER  - 
%0 Journal Article
%A T. A. Belkina
%A N. B. Konyukhova
%A S. V. Kurochkin
%T Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1812-1846
%V 52
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a5/
%G ru
%F ZVMMF_2012_52_10_a5
T. A. Belkina; N. B. Konyukhova; S. V. Kurochkin. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1812-1846. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a5/

[1] Boikov A. V., Stokhasticheskie modeli kapitala strakhovoi kompanii i otsenivanie veroyatnosti nerazoreniya, Diss. ... kand. fiz.-matem. nauk, MI im. V. A. Steklova RAN, M., 2003

[2] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007

[3] Boikov A. V., “Model Kramera–Lundberga so stokhasticheskimi premiyami”, Teoriya veroyatnostei i ee primeneniya, 47:3 (2002), 549–553 | DOI | MR | Zbl

[4] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya. I: Investitsionnye strategii i veroyatnost razoreniya”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya “Finansovaya i strakhovaya matematika”), 16:6 (2009), 961–981

[5] Belkina T. A., “Teoremy dostatochnosti dlya veroyatnosti nerazoreniya v dinamicheskikh modelyakh strakhovaniya s uchetom investitsii”, Analiz i modelirovanie ekonomicheskikh protsessov, 8, ed. V. Z. Belenkii, TsEMI RAN, M., 2011, 61–74

[6] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[7] Konyukhova N. B., “Singular problems for systems of nonlinear functional-differential equations”, Int. Sci. J. Spectral and Evolution Problems, 20 (2010), 199–214

[8] Belkina T. A., Konyukhova N. B., Kurkina A. O., “Optimalnoe upravlenie investitsiyami v dinamicheskikh modelyakh strakhovaniya. II: Model Kraméra–Lundberga s eksponentsialnym raspredeleniem razmera trebovanii”, Obozrenie prikladnoi i promyshlennoi matematiki (sektsiya “Finansovaya i strakhovaya matematika”), 17:1 (2010), 3–24 | MR

[9] Belkina T. A., Konyukhova N. B., Kurochkin S. V., “Singulyarnaya nachalnaya zadacha dlya lineinogo integrodifferentsialnogo uravneniya, voznikayuschego v modelyakh strakhovoi matematiki”, Int. Sci. J. Spectral and Evolution Problems, 21:1 (2011), 40–54 | MR

[10] Belkina T., Konyukhova N., Kurochkin S., “Singular problems for integro-differential equations in dynamic insurance models”, Proc. Int. Conf. on Differential and Difference Equations and Applications (in honour of Prof. Ravi P. Agarval) (Portugal, July 4–8, 2011), Springer Proceedings in Mathematics

[11] Melnikov A. V., Volkov S. N., Nechaev M. L., Matematika finansovykh obyazatelstv, GU VShE, M., 2001

[12] Grandell J., Aspects of risk theory, Springer, Berlin–New York, 1991 | MR | Zbl

[13] Belkina T. A., Kurkina A. O., “Ob optimalnom upravlenii investitsiyami v modeli Kramépa–Lundberga so stokhasticheskimi premiyami”, Analiz i modelirovanie ekonomicheskikh protsessov, 2, ed. V. Z. Belenkii, TsEMI RAN, M., 2005, 103–114

[14] Belkina T. A., Kurkina A. O., “Asimptotiki veroyatnosti nerazoreniya v dinamicheskoi modeli strakhovaniya”, Analiz i modelirovanie ekonomicheskikh protsessov, 4, ed. V. Z. Belenkii, TsEMI RAN, M., 2007, 67–82

[15] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR

[16] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[17] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[18] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[19] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[20] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:4 (1961), 733–737 | MR | Zbl

[21] Birger E. S., Lyalikova (Konyukhova) N. B., “O nakhozhdenii dlya nekotorykh sistem obyknovennykh uravnenii reshenii s zadannym usloviem na beskonechnosti. I; II”, Zh. vychisl. matem. i matem. fiz., 5:6 (1965), 979–990 ; 6:3 (1966), 446–453 | MR | MR

[22] Abramov A. A., Balla K., Konyukhova N. B., “Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii”, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1981 | MR

[23] Abramov A. A., Konyukhova N. B., Balla K., “Ustoichivye nachalnye mnogoobraziya i singulyarnye kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii”, Comput. Math. Banach Center Publs., 13, 1984, 319–351 | MR | Zbl

[24] Abramov A. A., Konyukhova N. B., “Perenos dopustimykh granichnykh uslovii iz osoboi tochki dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1985 | MR

[25] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sov. J. Numer. Anal. Math. Modelling, 1:4 (1986), 245–265 | DOI | MR | Zbl

[26] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:3 (1983), 629–645 | MR | Zbl

[27] Abramov A. A., Ditkin V. V., Konyukhova N. B. i dr., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1155–1173 | MR | Zbl

[28] Konyukhova N. B., “Singulyarnye zadachi Koshi dlya sistem obyknovennykh differentsialnykh i funktsionalno-differentsialnykh uravnenii”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1988 | MR

[29] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl

[30] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[31] Frolova A., Kabanov Yu., Pergamenshchikov S., “In the insurance business risky investments are dangerous”, Finance Stochast., 6:2 (2002), 227–235 | DOI | MR | Zbl

[32] Kalashnikov V., Norberg R., “Rower tailed ruin probabilities in the presence of risky investments”, Stoch. Proc. Appl., 98 (2002), 211–228 | DOI | MR | Zbl