Runge–Kutta collocation methods for differential-algebraic equations of indices 2 and 3
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1801-1811 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stiffly accurate Runge–Kutta collocation methods with explicit first stage are examined. The parameters of these methods are chosen so as to minimize the errors in the solutions to differential-algebraic equations of indices 2 and 3. This construction results in methods for solving such equations that are superior to the available Runge–Kutta methods.
@article{ZVMMF_2012_52_10_a4,
     author = {L. M. Skvortsov},
     title = {Runge{\textendash}Kutta collocation methods for differential-algebraic equations of indices~2 and~3},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1801--1811},
     year = {2012},
     volume = {52},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a4/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Runge–Kutta collocation methods for differential-algebraic equations of indices 2 and 3
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1801
EP  - 1811
VL  - 52
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a4/
LA  - ru
ID  - ZVMMF_2012_52_10_a4
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Runge–Kutta collocation methods for differential-algebraic equations of indices 2 and 3
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1801-1811
%V 52
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a4/
%G ru
%F ZVMMF_2012_52_10_a4
L. M. Skvortsov. Runge–Kutta collocation methods for differential-algebraic equations of indices 2 and 3. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1801-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a4/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Pogorelov D. Yu., “O chislennykh metodakh modelirovaniya dvizheniya sistem tverdykh tel”, Zh. vychisl. matem. i matem. fiz., 35:4 (1995), 631–638 | MR | Zbl

[3] Hairer R., Lubich C., Roche M., The numerical solution of differential-algebraic systems by Runge–Kutta methods, Lecture Notes in Math., 1409, Springer, Berlin, 1989 | MR | Zbl

[4] Jay L., “Convergence of a class of Runge–Kutta methods for differential-algebraic systems of index 2”, BIT, 33:1 (1993), 137–150 | DOI | MR | Zbl

[5] Jay L., “Convergence of Runge–Kutta methods for differential-algebraic systems of index 3”, Appl. Numer. Math., 17:2 (1995), 97–118 | DOI | MR | Zbl

[6] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O. D.E.'s”, SIAM J. Numer. Analys., 14:6 (1977), 1006–1021 | DOI | MR | Zbl

[7] Cameron F., Palmroth M., Piche R., “Quasi stage order conditions for SDIRK methods”, Appl. Numer. Math., 42:1–3 (2002), 61–75 | DOI | MR | Zbl

[8] Alexander R., “Design and implementation of DIRK integrators for stiff systems”, Appl. Numer. Math., 46:1 (2003), 1–17 | DOI | MR | Zbl

[9] Kværnø A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR | Zbl

[10] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR | Zbl

[11] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl

[12] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR

[13] Skvortsov L. M., “Modelnye uravneniya dlya issledovaniya tochnosti metodov Runge–Kutty”, Matem. modelirovanie, 22:5 (2010), 146–160 | MR | Zbl

[14] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1047–1059 | MR | Zbl

[15] Gonzalez-Pinto S., Hernandez-Abreu D., Montijano J. I., “An efficient family of strongly $A$-stable Runge–Kutta collocation methods for stiff systems and DAEs. Part I: Stability and order results”, J. Comput. Appl. Math., 234:4 (2010), 1105–1116 | DOI | MR | Zbl

[16] Gonzalez-Pinto S., Hernandez-Abreu D., “Global error estimates for a uniparametric family of stiffly accurate Runge–Kutta collocation methods on singularly perturbed problems”, BIT, 51:1 (2011), 155–175 | DOI | MR | Zbl

[17] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[18] Aulchenko S. M., Latypov A. F., Nikulichev Yu. V., “Metod chislennogo integrirovaniya sistem obyknovennykh differentsialnykh uravnenii s ispolzovaniem interpolyatsionnykh polinomov Ermita”, Zh. vychisl. matem. i matem. fiz., 38:10 (1998), 1665–1670 | MR

[19] Kulikov G. Yu., Merkulov A. I., “Ob odnoshagovykh kollokatsionnykh metodakh so starshimi proizvodnymi dlya resheniya obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1782–1807 | MR | Zbl

[20] Kulikov G. Yu., Khrustaleva E. Yu., “Ob avtomaticheskom upravlenii dlinoi shaga i poryadkom v odnoshagovykh kollokatsionnykh metodakh so starshimi proizvodnymi”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1060–1077 | MR | Zbl

[21] Prothero A., Robinson A., “On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations”, Math. Comput., 28:1 (1974), 145–162 | DOI | MR

[22] Skvortsov L. M., “Yavnye stabilizirovannye metody Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1236–1250 | MR | Zbl