Differential properties of the minimum function for diagonalizable quadratic problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1768-1777 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the problem of minimizing a quadratic functional subject to quadratic equality constraints, the topological and differential properties of the minimum function are examined. It is assumed that all the quadratic forms appearing in the statement of the problem are determined by simultaneously diagonalizable matrices. Under this assumption, sufficient conditions for the minimum function to be Lipschitzian are derived, and a description of the set on which this function may not be differentiable, is given.
@article{ZVMMF_2012_52_10_a2,
     author = {A. V. Arutyunov and S. E. Zhukovskiy and Z. T. Mingaleeva},
     title = {Differential properties of the minimum function for diagonalizable quadratic problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1768--1777},
     year = {2012},
     volume = {52},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
AU  - Z. T. Mingaleeva
TI  - Differential properties of the minimum function for diagonalizable quadratic problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1768
EP  - 1777
VL  - 52
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a2/
LA  - ru
ID  - ZVMMF_2012_52_10_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%A Z. T. Mingaleeva
%T Differential properties of the minimum function for diagonalizable quadratic problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1768-1777
%V 52
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a2/
%G ru
%F ZVMMF_2012_52_10_a2
A. V. Arutyunov; S. E. Zhukovskiy; Z. T. Mingaleeva. Differential properties of the minimum function for diagonalizable quadratic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1768-1777. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a2/

[1] Arutyunov A. V., “Neotritsatelnost kvadratichnykh form na peresechenii kvadrik i kvadratichnye otobrazheniya”, Matem. zametki, 84:2 (2008), 163–174 | DOI | MR | Zbl

[2] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s oshibkoi”, Matem. sb., 193:3 (2002), 79–100 | DOI | MR

[3] Vysk N. D., Osipenko K. Yu., “Optimalnoe vosstanovlenie resheniya volnovogo uravneniya po netochnym nachalnym dannym”, Matem. zametki, 81:6 (2007), 803–815 | DOI | MR | Zbl

[4] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[5] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[6] Arutyunov A. V., Izmailov A. F., “Teoriya chuvstvitelnosti dlya anormalnykh zadach optimizatsii s ogranicheniyami tipa ravenstv”, Zh. vychisl. matem. i matem. fiz., 43:2 (2003), 186–202 | MR | Zbl

[7] Arutyunov A. V., Izmailov A. F., “Abnormal equality-constrained optimization problems: sensitivity theory”, Math. Progam. Ser. A, 100:3 (2004), 485–515 | MR | Zbl

[8] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial, M., 2003 | MR

[9] Arutyunov A. V., Karamzin D. Yu., “Regulyarnye nuli kvadratichnykh otobrazhenii i ikh prilozhenie”, Matem. sb., 202:6 (2011), 3–28 | DOI | MR | Zbl

[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[11] Goldman A. Dzh., “Teoremy razlozheniya i otdelimosti dlya mnogogrannykh vypuklykh mnozhestv”, Lineinye neravenstva i smezhnye voprosy, eds. Kun G. U., Takker A. U., Izd-vo inostr. lit., M., 1959, 162–171

[12] Ashmanov S. A., Lineinoe programmirovanie, Nauka, M., 1981 | Zbl

[13] Arutyunov A. V., “Teorema o neyavnoi funktsii bez apriornykh predpolozhenii normalnosti”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 205–215 | MR | Zbl