@article{ZVMMF_2012_52_10_a1,
author = {V. G. Alekseev and V. A. Sukhodoev},
title = {Schoenberg{\textquoteright}s polynomial {B-splines} of odd degrees: {A} brief review of application},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1756--1767},
year = {2012},
volume = {52},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a1/}
}
TY - JOUR AU - V. G. Alekseev AU - V. A. Sukhodoev TI - Schoenberg’s polynomial B-splines of odd degrees: A brief review of application JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1756 EP - 1767 VL - 52 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a1/ LA - ru ID - ZVMMF_2012_52_10_a1 ER -
%0 Journal Article %A V. G. Alekseev %A V. A. Sukhodoev %T Schoenberg’s polynomial B-splines of odd degrees: A brief review of application %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1756-1767 %V 52 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a1/ %G ru %F ZVMMF_2012_52_10_a1
V. G. Alekseev; V. A. Sukhodoev. Schoenberg’s polynomial B-splines of odd degrees: A brief review of application. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 10, pp. 1756-1767. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_10_a1/
[1] Alekseev V. G., “Novye nepreryvnye filtry nizhnikh chastot”, Radiotekhnika (Moskva), 1998, no. 4, 34–35
[2] Alekseev V. G., “Novyi analogovyi lineinyi filtr nizhnikh chastot”, Radiotekhnika (Moskva), 2005, no. 10, 143–144
[3] Alekseev V. G., “O neparametricheskikh otsenkakh plotnosti veroyatnosti i ee proizvodnykh”, Problemy peredachi informatsii, 18:2 (1982), 22–29 | Zbl
[4] Davis K. V., “Mean integrated squared error properties of density estimates”, Ann. Statist., 5:3 (1977), 530–535 | DOI | MR | Zbl
[5] Cline D. V. H., “Admissible kernel estimators of a multivariate density”, Ann. Statist., 16:4 (1988), 1421–1427 | DOI | MR | Zbl
[6] Alekseev V. G., “Neparametricheskoe otsenivanie plotnosti veroyatnosti i ee proizvodnykh. $L_2$-podkhod”, Avtometriya, 43:6 (2007), 39–47
[7] Alekseev V. G., “Neparametricheskii spektralnyi analiz statsionarnykh sluchainykh protsessov”, Avtometriya, 2000, no. 4, 131–136
[8] Alekseev V. G., Sukhodoev V. A., “Otsenka spektralnoi plotnosti tipa Uelcha. Sluchai nepreryvnogo argumenta”, Avtometriya, 45:2 (2009), 22–28 | MR
[9] Alekseev V. G., Sukhodoev V. A., “Novye nabory veivletoobrazuyuschikh funktsii”, Izv. RAN. Fizika atmosfery i okeana, 43:5 (2007), 617–622
[10] Alekseev V. G., Sukhodoev V. A., “Novye analogovye ploskovershinnye i differentsiruyuschie lineinye filtry”, Elektromagnitnye volny i elektronnye sistemy, 11:10 (2006), 21–25
[11] Alekseev V. G., “Approksimatsiya analogovogo idealnogo filtra nizhnikh chastot”, Elektromagnitnye volny i elektronnye sistemy, 16:11 (2011), 22–23
[12] Lem G., Analogovye i tsifrovye filtry. Raschet i realizatsiya, Mir, M., 1982
[13] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Izd. 5-e, Nauka, M., 1971
[14] Alekseev V. G., “Polinomialnye $B$-splainy Shenberga. Primenenie k summirovaniyu ryadov”, Uzbek Math. J., 2011, no. 3, 13–19
[15] Kravchenko V. F., Rvachev V. A., ““Wavelet”-sistemy i ikh primenenie v obrabotke signalov”, Zarubezhnaya radioelektronika, 1996, no. 4, 3–20
[16] Mischenko E. V., “O nakhozhdenii granits Rissa splain-bazisa s pomoschyu trigonometricheskikh polinomov”, Sib. matem. zhurnal, 51:4 (2010), 829–837 | MR
[17] Alekseev V. G., “Approksimatsiya analogovykh filtrov s beskonechnoi impulsnoi kharakteristikoi”, Elektromagnitnye volny i elektronnye sistemy, 13:1 (2008), 9–13 | MR
[18] Butzer P. L., Schmidt M., Stark E. L., Vogt L., “Central factorial numbers; their main properties and some applications”, Numer. Func. Anal. Optimiz., 10:5–6 (1989), 419–488 | DOI | MR | Zbl
[19] Unser M., Aldroubi A., Eden M., “Polynomial spline signal approximations: filter design and asymptotic equivalence with Shannon's sampling theorem”, IEEE Trans. Inform. Theory, 38:1 (1992), 95–103 | DOI | MR | Zbl
[20] Aldroubi A., Unser M., Eden M., “Cardinal spline filters: stability and convergence to the ideal sine interpolator”, Signal Processing, 28:2 (1992), 127–138 | DOI | MR | Zbl
[21] Chen J. J., Chan A. K., Chui C. K., “A local interpolatory cardinal spline method for the determination of eigenstates in quantum-well structures with arbitrary potential profiles”, IEEE Trans. Quantum Electron., 30:2 (1994), 269–274 | DOI
[22] Unser M., Daubechies I., “On the approximation power of convolution-based least squares versus interpolation”, IEEE Trans. Signal Proc., 45:7 (1997), 1697–1711 | DOI | MR | Zbl
[23] Unser M., “Sampling — 50 years after Shannon”, Proc. of the IEEE, 88:4 (2000), 569–587 | DOI
[24] Khashimov Sh. A., Ubaidullaev K. Kh., “O silnoi sostoyatelnosti splain-otsenki plotnosti raspredeleniya”, Uzbek. Math. J., 2000, no. 1, 60–66 | MR | Zbl
[25] Khashimov Sh. A., Ubaidullaev K. X., “Ob $L_1$-skhodimosti splain-otsenki plotnosti raspredeleniya”, Uzbek. Math. J., 2001, no. 1, 68–73 | MR
[26] Alekseev V. G., “B-splainy Shenberga i ikh primenenie v radiotekhnike i v smezhnykh s nei distsiplinakh”, Radiotekhnika (Moskva), 2003, no. 12, 21–23
[27] Kano K., Egerstedt M., Nakata K., Martin S. F., “B-splines and control theory”, Appl. Math. Comput., 145:2–3 (2003), 263–288 | DOI | MR | Zbl
[28] Kano K., Nakata H., Martin C. F., “Optimal curve fitting and smoothing using normalized uniform B-splines: a tool for studying complex systems”, Arrl. Math. Comput., 169:1 (2005), 96–128 | DOI | MR | Zbl
[29] Liu X., “Univariate and bivariate orthonormal splines and cardinal splines on compact supports”, J. Comput. Arrl. Math., 195:1–2 (2006), 93–105 | DOI | MR | Zbl
[30] Podkur P. N., “Postroenie veivletov s koeffitsientom masshtabirovaniya N na osnove B-splainov”, Vestnik KemGU. Matematika, 2006, no. 4, 19–24
[31] Apaidin G., Seker S., Ari N., “Weighted extended b-splines for one-dimensional electromagnetic problems”, Appl. Math. Comput., 190:2 (2007), 1125–1135 | DOI | MR
[32] Caglar K., Caglar N., “Fifth-degree B-spline solution for a fourth-order parabolic partial differential equations”, Arrl. Math. Comput., 201:1-2 (2008), 597–603 | DOI | MR | Zbl
[33] Vainikko G., “Cardinal approximation of functions by splines on an interval”, Math. Modelling and Anal., 14:1 (2009), 127–138 | DOI | MR | Zbl
[34] Udovičić Z., “Splines in numerical integration”, Mathematica Balkanica. New Series, 24:3–4 (2010), 351–358 | MR | Zbl
[35] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl
[36] Chui Ch., Vvedenie v veivlety, Mir, M., 2001
[37] Svinin S. F., Bazisnye splainy v teorii otschetov signalov, Nauka, SPb., 2003