Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1695-1702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-boundary value problem for the diffusion equation with an unknown initial condition is considered. Additional information used for determining the unknown initial condition is an external volume potential whose density is the Laplacian calculated for the solution of the initial-boundary value problem. Uniqueness theorems for the inverse problem are proved in the case when the spatial domain of the initial-boundary value problem is a spherical layer or a parallelepiped.
@article{ZVMMF_2011_51_9_a9,
     author = {A. M. Denisov},
     title = {Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1695--1702},
     year = {2011},
     volume = {51},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a9/}
}
TY  - JOUR
AU  - A. M. Denisov
TI  - Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1695
EP  - 1702
VL  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a9/
LA  - ru
ID  - ZVMMF_2011_51_9_a9
ER  - 
%0 Journal Article
%A A. M. Denisov
%T Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1695-1702
%V 51
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a9/
%G ru
%F ZVMMF_2011_51_9_a9
A. M. Denisov. Inverse problem for the diffusion equation with overdetermination in the form of an external volume potential. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1695-1702. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a9/

[1] Denisov A. M., Kalinin V. V., “Obratnaya zadacha dlya matematicheskikh modelei vozbuzhdeniya serdtsa”, Zh. vychisl. matem. i matem. fiz., 50:3 (2010), 539–543 | MR | Zbl

[2] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[3] Anger G., Inverse problems in differential equations, Plenum Press, New York, 1990 | MR | Zbl

[4] Isakov V., Inverse source problems, Surveys and monographs series, 34, AMS, 1990 | MR | Zbl

[5] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[6] Prilepko A. I., Orlovsky D. S., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 1999 | MR