Two-parameter extremum problems of boundary control for stationary thermal convection equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1645-1664 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-parameter extremum problems of boundary control are formulated for the stationary thermal convection equations with Dirichlet boundary conditions for velocity and with mixed boundary conditions for temperature. The cost functional is defined as the root mean square integral deviation of the desired velocity (vorticity, or pressure) field from one given in some part of the flow region. Controls are the boundary functions involved in the Dirichlet condition for velocity on the boundary of the flow region and in the Neumann condition for temperature on part of the boundary. The uniqueness of the extremum problems is analyzed, and the stability of solutions with respect to certain perturbations in the cost functional and one of the functional parameters of the original model is estimated. Numerical results for a control problem associated with the minimization of the vorticity norm aimed at drag reduction are discussed.
@article{ZVMMF_2011_51_9_a6,
     author = {G. V. Alekseev and D. A. Tereshko},
     title = {Two-parameter extremum problems of boundary control for stationary thermal convection equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1645--1664},
     year = {2011},
     volume = {51},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a6/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - D. A. Tereshko
TI  - Two-parameter extremum problems of boundary control for stationary thermal convection equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1645
EP  - 1664
VL  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a6/
LA  - ru
ID  - ZVMMF_2011_51_9_a6
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A D. A. Tereshko
%T Two-parameter extremum problems of boundary control for stationary thermal convection equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1645-1664
%V 51
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a6/
%G ru
%F ZVMMF_2011_51_9_a6
G. V. Alekseev; D. A. Tereshko. Two-parameter extremum problems of boundary control for stationary thermal convection equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1645-1664. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a6/

[1] Gunzburger M. D., Hou L., Svobodny T. P., “The approximation of boundary control problems for fluid flows with an application to control by heating and cooling”, Comput. Fluids, 22 (1993), 239–251 | DOI | MR | Zbl

[2] Ito K., Ravindran S. S., “Optimal control of thermally convected fluid flows”, SIAM J. Sci. Comput., 19:6 (1998), 1847–1869 | DOI | MR | Zbl

[3] Alekseev G. V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sibirskii matem. zhurnal, 39:5 (1998), 982–998 | MR | Zbl

[4] Lee H.-C., Imanuvilov O. Yu., “Analysis of optimal control problems for the 2-D stationary Boussinesq equations”, J. Math. Analys. Appl., 242 (2000), 191–211 | DOI | MR | Zbl

[5] Lee H. C., “Analysis and computational methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations”, Adv. Comput. Math., 19:1/3 (2003), 255–275 | DOI | MR | Zbl

[6] Alekseev G. V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplovoi konvektsii”, Vestn. Novosibirskogo un-ta. Ser. Matematika, mekhanika i informatika, 6:2 (2006), 7–31

[7] Alekseev G. V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplo-massoperenosa”, Zh. vychisl. matem. matem. fiz., 47:6 (2007), 1055–1076 | MR

[8] Alekseev G. V., Soboleva O. V., Tereshko D. A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekhan. i tekhn. fiz., 49:4 (2008), 24–35 | MR

[9] Lee H. C., “Optimal control problems for the two dimensional Rayleigh-Benard type convection by a gradient method”, Jpan. J. Ind. Appl. Math., 26:1 (2009), 93–121 | DOI | MR | Zbl

[10] Alekseev G. V., Tereshko D. A., “Boundary control problems for stationary equations of heat transfer”, Advances Math. Fluid Mech., Birkhauser Verlag, Basel, 2010, 1–21 | MR | Zbl

[11] Alekseev G. V., Tereshko D. A., “Ekstremalnye zadachi granichnogo upravleniya dlya statsionarnoi modeli teplovoi konvektsii”, Dokl. RAN, 430:2 (2010), 173–178 | MR | Zbl

[12] Alekseev G. V., Tereshko D. A., “Ekstremalnye zadachi granichnogo upravleniya dlya statsionarnykh uravnenii teplovoi konvektsii”, Prikl. mekhan. i tekhn. fiz., 51:4 (2010), 72–84 | MR

[13] Ismail-zade A. T., Korotkii A. I., Naimark B. M., Tsepelev I. A., “Trekhmernoe chislennoe modelirovanie obratnoi zadachi teplovoi konvektsii”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 614–626 | MR | Zbl

[14] Ismail-zade A. T., Korotkii A. I., Tsepelev I. A., “Trekhmernoe chislennoe modelirovanie obratnoi retrospektivnoi zadachi teplovoi konvektsii na osnove metoda kvaziobrascheniya”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2277–2288 | MR

[15] Fursikov A. V., Imanuvilov O. Y., “Local exact boundary controllability of the Boussinesq equation”, SIAM J. Control Optimizat., 36:2 (1998), 391–421 | DOI | MR | Zbl

[16] Fursikov A. V., Emanuilov O. Yu., “Tochnaya upravlyaemost uravnenii Nave–Stoksa i Bussineska”, Uspekhi matem. nauk, 54:3 (1999), 93–146 | MR | Zbl

[17] Stavre R., “Distributed control of a heat conducting time – dependent Navier–Stokes fluid”, Glasgow Math. J., 44 (2002), 191–200 | DOI | MR | Zbl

[18] Lee H. C., Shin B. C., “Dynamics for controlled 2-D Boussinesq systems with distributed controls”, J. Math. Analys. Appl., 273:2 (2002), 457–479 | DOI | MR | Zbl

[19] Fernandez-Cara E., Guerrero S., Imanuvilov O., Puel J. P., “Some controllability results for the $N$-dimensional Navier–Stokes and Boussinesq systems with $N$-1 scalar controls”, SIAM J. Control Optimizat., 45:1 (2006), 146–173 | DOI | MR | Zbl

[20] Boldrini J. L., Fernandez-Cara E., Rojas-Medar M. A., “An optimal control problem for a generalized Boussinesq model: The time dependent case”, Rev. Mat. Complut., 20:2 (2007), 329–366 | MR

[21] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[22] Girault V., Raviart P. A., Finite element methods for Navier–Stokes equations. Theory and algorithms, Springer, Berlin, 1986 | MR | Zbl

[23] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[24] Slawig T., “PDE-constrained control using Femlab-control of the Navier–Stokes equations”, Numer. Algorithms, 42:2 (2006), 107–126 | DOI | MR | Zbl

[25] De los Reyes J. C., Troltzsch F., “Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints”, SIAM J. Control Optimizat., 46:2 (2007), 604–629 | DOI | MR | Zbl